922 research outputs found

    Public Welfare Administration Under the Social Security Act

    Get PDF

    Highly excited negative parity baryons in the 1/Nc1/N_c expansion

    Full text link
    The masses of experimentally known highly excited baryons of negative parity supposed to belong to the [70,][{\bf 70},\ell^-] multiplets (\ell = 1,2,3) of the N=3N = 3 band are calculated in the 1/Nc1/N_c expansion method to order 1/Nc1/N_c by using a procedure which allows to considerably reduce the number of linearly independent operators entering the mass formula. The numerical fits to present data show that the coefficients encoding the QCD dynamics have large, comparable values, for the flavor and spin operators. It implies that these operators contribute dominantly to the flavor-spin SU(6) symmetry breaking, like for the [70,1][{\bf 70},1^-] multiplet of the N=1N = 1 band.Comment: 15 pages, accepted for publication in Phys.Rev.

    Physical and Chemical Toeholds for Exoplanet Bioastronomy

    Get PDF
    If a search for exoplanet life were mounted today, the likely focus would be to detect oxygen (or ozone) in the atmosphere of a water-bearing rocky planet orbiting roughly 1AU from a G-type star. This appropriately conservative and practical default is necessary in large part because biological input on the question of where and how to look for life has progressed little beyond a purely empirical reliance on the example of terrestrial biology. However, fundamental physical and chemical considerations may impose significant yet universal constraints on biological potential. The liquid water + oxygen paradigm will be considered as an example, with a focus on the question, is liquid water a prerequisite for life? . Life requires a solvent to mediate interactions among biological molecules. A key class of these interactions is molecular recognition with high specificity, which is essential for high fidelity catalysis and (especially) information processing. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity greater than 10(exp 7):1 for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in non-polar solvents, but the resulting complexes are too stable to be "unmade" with sufficient frequency to confer thermodynamic control on the system. Such considerations suggest that water, or a solvent with properties very like water, is necessary to support high-fidelity information processing a feature that must be common to all biology and can therefore be considered a critical prerequisite for life

    Biological Potential in Serpentinizing Systems

    Get PDF
    Generation of the microbial substrate hydrogen during serpentinization, the aqueous alteration of ultramafic rocks, has focused interest on the potential of serpentinizing systems to support biological communities or even the origin of life. However the process also generates considerable alkalinity, a challenge to life, and both pH and hydrogen concentrations vary widely across natural systems as a result of different host rock and fluid composition and differing physical and hydrogeologic conditions. Biological potential is expected to vary in concert. We examined the impact of such variability on the bioenergetics of an example metabolism, methanogenesis, using a cell-scale reactive transport model to compare rates of metabolic energy generation as a function of physicochemical environment. Potential rates vary over more than 5 orders of magnitude, including bioenergetically non-viable conditions, across the range of naturally occurring conditions. In parallel, we assayed rates of hydrogen metabolism in wells associated with the actively serpentinizing Coast Range Ophiolite, which includes conditions more alkaline and considerably less reducing than is typical of serpentinizing systems. Hydrogen metabolism is observed at pH approaching 12 but, consistent with the model predictions, biological methanogenesis is not observed

    Biosignatures in the Context of Low Energy Flux

    Get PDF
    Many of the features that are thought of as biosignatures - including the mediation of chemical and physical processes with speed, specificity, and selectivity - result directly or indirectly from life's unique capability to mediate and direct energy flux. As such, it is important to consider the impact that differences in energy flux may have on the quantity and quality of evidence for life. Earth differs from every other body in our solar system in the magnitude of biologically-usable energy flux into a liquid water environment. On a global basis, the capture of light energy into photosynthesis and the flux of chemical energy represented in the products of that photosynthesis (organic material + O2) are about six and four orders of magnitude larger, respectively, than the flux of energy represented in geochemical sources. Our conception of what an inhabited world "looks like" and our intuition about how to search for life are based in this high-energy context. Energy fluxes on worlds beyond Earth may be better approximated by the million-fold smaller flux provided to Earth's biosphere by geochemical sources. As a result, the nature, abundance, and quality of evidence for life that could be expected on an inhabited extraterrestrial world within our solar system may differ profoundly from that found on Earth. Understanding this potential difference in quantitative terms provides important context for the formulation of life detection strategies. The influence of energy flux on biosignatures can be evaluated through reference to the two basic purposes into which life partitions energy flux: (1) Life expends energy to sustain existing biomass in a metabolic steady state (metabolically functional but non-growing). The formal representation of this relationship in the traditional microbiology literature equates biomass directly with energy flux. The direct implication is that worlds having lower energy flux will have correspondingly lower potential to support biomass. Life detection strategies that directly target extant organisms should therefore be prepared to encounter average biomass densities that may be many orders of magnitude smaller than those found in most of Earth's surface environments (2) Life expends energy to synthesize new biomass. An end-member case in which new biomass is created at the energy-limited rate and the corresponding cells are immediately destroyed (so that the energy partitioned to cell maintenance is minimized) establishes an upper bound on the rate at which biological material can enter a bulk global pool. For a specified bulk concentration [i] of any particular biological compound, i, or for biologically produced matter overall, this synthesis rate, R (sub i), defines a characteristic time scale tau (sub i) equals [i] divided by R (sub i). tau (sub i) can be thought of as (a) the minimum time required for biosynthesis to yield a specific bulk concentration (e.g., a detection threshold) of i, and (b) the average residence time of i within a bulk pool when [i] is held in steady state through a balance between biosynthesis and attrition by physical, chemical, or biological consumption. tau (sub i) becomes an important quantity in considering the potential utility of enantiomeric excess (as a product of homochiral biosynthesis) as a biosignature. Spontaneous racemization of amino acids acts to "erase" the signature of homochiral synthesis over time scales that may range from hundreds to hundreds of thousands of years, depending on temperature. For environments in which low energy flux translates to low rates of biosynthesis, including the synthesis of homochiral amino acids, amino acid residence times in pools having detectable concentrations may compare to or significantly exceed the time scale for racemization. This and similar consequences of long residence times should be considered in the formulation of life detection strategies based on detection of biologically-produced species. Fluxes of biologically-useful energy on potentially habitable worlds within our solar system are, at present, not well constrained. Improving such constraint has the potential to inform priorities in the formulation and targeting of search-for-life strategies, based on the implications of energy flux for the abundance and quality of biosignatures overall, and in specific categories

    Influence of Fire on the Shear Capacity of Cold-Formed Steel Framed Shear Walls

    Get PDF
    This paper presents experimental investigations of the performance of common lateral force-resisting systems used in cold-formed steel construction under sequential thermal (fire) and mechanical (earthquake) loading. Wall specimens with gypsum-sheet steel composite sheathing, Oriented Strand Board (OSB) sheathing, or steel strap bracing were tested. The results demonstrate that the lateral capacity of wall systems can be reduced by exposure to fire. Additionally, fire performance of wall systems can be affected by pre-damage to the fire-resistive components that provide fire protection to these walls. The results are useful for fire compartmentation design when significant lateral deformation of a building is anticipated and post-fire assessment to repair or replace a structure. The study represents a step toward developing fire fragility functions for cold-formed steel framed shear wall systems to enable performance-based fire design

    An energy balance concept for habitability

    Get PDF
    ABSTRACT Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists

    Review of Fiber Optic Sensors for Structural Fire Engineering

    Get PDF
    Reliable and accurate measurements of temperature and strain in structures subjected to fire can be difficult to obtain using traditional sensing technologies based on electrical signals. Fiber optic sensors, which are based on light signals, solve many of the problems of monitoring structures in high temperature environments; however, they present their own challenges. This paper, which is intended for structural engineers new to fiber optic sensors, reviews various fiber optic sensors that have been used to make measurements in structure fires, including the sensing principles, fabrication, key characteristics, and recently-reported applications. Three categories of fiber optic sensors are reviewed: Grating-based sensors, interferometer sensors, and distributed sensors

    Extraction of Resonances from Meson-Nucleon Reactions

    Full text link
    We present a pedagogical study of the commonly employed Speed-Plot (SP) and Time-delay (TD) methods for extracting the resonance parameters from the data of two particle coupled-channels reactions. Within several exactly solvable models, it is found that these two methods find poles on different Riemann sheets and are not always valid. We then develop an analytic continuation method for extracting the nucleon resonances within a dynamical coupled-channel formulation of the πN\pi N and γN\gamma N reactions. The main focus is on resolving the complications due to the coupling with the unstable πΔ,ρN,σN\pi \Delta, \rho N, \sigma N channels which decay into ππN\pi \pi N states. By using the results from the considered exactly solvable models, explicit numerical procedures are presented and verified. As a first application of the developed analytic continuation method, we present the nucleon resonances in the S11S_{11} and S31S_{31} partial waves extracted within a recently developed coupled-channels model of πN\pi N reactions. The results from this realistic πN\pi N model, which includes πN\pi N, ηN\eta N, πΔ\pi\Delta, ρN\rho N, and σN\sigma N channels, also show that the simple pole parametrization of the resonant propagator using the poles extracted from SP and TD methods works poorly.Comment: 32 pages, 14 figure
    corecore