16 research outputs found

    Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor

    Get PDF
    A facultative chemoautotrophic bacterium, strain MLHE-1T, was isolated from Mono Lake, an alkaline hypersaline soda lake in California, USA. Cells of strain MLHE-1T were Gram-negative, short motile rods that grew with inorganic electron donors (arsenite, hydrogen, sulfide or thiosulfate) coupled with the reduction of nitrate to nitrite. No aerobic growth was attained with arsenite or sulfide, but hydrogen sustained both aerobic and anaerobic growth. No growth occurred when nitrite or nitrous oxide was substituted for nitrate. Heterotrophic growth was observed under aerobic and anaerobic (nitrate) conditions. Cells of strain MLHE-1T could oxidize but not grow on CO, while CH4 neither supported growth nor was it oxidized. When grown chemoautotrophically, strain MLHE-1T assimilated inorganic carbon via the Calvin-Benson-Bassham reductive pentose phosphate pathway, with the activity of ribulose 1,5-bisphosphate carboxylase (RuBisCO) functioning optimally at 0.1 M NaCl and at pH 7.3. Strain MLHE-1T grew over broad ranges of pH (7.3-10.0; optimum, 9.3), salinity (115-190 g l-1; optimum 30 g l-1) and temperature (113-40 °C; optimum, 30 °C). Phylogenetic analysis of 16S rRNA gene sequences placed strain MLHE-1T in the class Gammaproteobacteria (family Ectothiorhodospiraceae) and most closely related to Alkalispirillum mobile (98.5%) and Alkalilimnicola halodurans (98.6%), although none of these three haloalkaliphilic micro-organisms were capable of photoautotrophic growth and only strain MLHE-1T was able to oxidize As(III). On the basis of physiological characteristics and DNA-DNA hybridization data, it is suggested that strain MLHE-1T represents a novel species within the genus Alkalilimnicola for which the name Alkalilimnicola ehrlichii is proposed. The type strain is MLHE-1T (=DSM 17681T =ATCC BAA-1101T). Aspects of the annotated full genome of Alkalilimnicola ehrlichii are discussed in the light of its physiology. © 2007 IUMS

    Redox Transformations of Arsenic Oxyanions in Periphyton Communities

    No full text
    Periphyton (Cladophora sp.) samples from a suburban stream lacking detectable dissolved As were able to reduce added As(V) to As(III) when incubated under anoxic conditions and, conversely, oxidized added As(III) to As(V) with aerobic incubation. Both types of activity were abolished in autoclaved controls, thereby demonstrating its biological nature. The reduction of As(V) was inhibited by chloramphenicol, indicating that it required the synthesis of new protein. Nitrate also inhibited As(V) reduction, primarily because it served as a preferred electron acceptor to which the periphyton community was already adapted. However, part of the inhibition was also caused by microbial reoxidation of As(III) linked to nitrate. Addition of [(14)C]glucose to anoxic samples resulted in the production of (14)CO(2), suggesting that the observed As(V) reduction was a respiratory process coupled to the oxidation of organic matter. The population density of As(V)-reducing bacteria within the periphyton increased with time and with the amount of As(V) added, reaching values as high as ∼10(6) cells ml(−1) at the end of the incubation. This indicated that dissimilatory As(V) reduction in these populations was linked to growth. However, As(V)-respiring bacteria were found to be present, albeit at lower numbers (∼10(2) ml(−1)), in freshly sampled periphyton. These results demonstrate the presence of a bacterial population within the periphyton communities that is capable of two key arsenic redox transformations that were previously studied in As-contaminated environments, which suggests that these processes are widely distributed in nature. This assumption was reinforced by experiments with estuarine samples of Cladophora sericea in which we detected a similar capacity for anaerobic As(V) reduction and aerobic As(III) oxidation

    Coupled Arsenotrophy in a Hot Spring Photosynthetic Biofilm at Mono Lake, California â–¿

    No full text
    Red-pigmented biofilms grow on rock and cobble surfaces present in anoxic hot springs located on Paoha Island in Mono Lake. The bacterial community was dominated (∼ 85% of 16S rRNA gene clones) by sequences from the photosynthetic Ectothiorhodospira genus. Scraped biofilm materials incubated under anoxic conditions rapidly oxidized As(III) to As(V) in the light via anoxygenic photosynthesis but could also readily reduce As(V) to As(III) in the dark at comparable rates. Back-labeling experiments with 73As(V) demonstrated that reduction to 73As(III) also occurred in the light, thereby illustrating the cooccurrence of these two anaerobic processes as an example of closely coupled arsenotrophy. Oxic biofilms also oxidized As(III) to As(V). Biofilms incubated with [14C]acetate oxidized the radiolabel to 14CO2 in the light but not the dark, indicating a capacity for photoheterotrophy but not chemoheterotrophy. Anoxic, dark-incubated samples demonstrated As(V) reduction linked to additions of hydrogen or sulfide but not acetate. Chemoautotrophy linked to As(V) as measured by dark fixation of [14C]bicarbonate into cell material was stimulated by either H2 or HS−. Functional genes for the arsenate respiratory reductase (arrA) and arsenic resistance (arsB) were detected in sequenced amplicons of extracted DNA, with about half of the arrA sequences closely related (∼98% translated amino acid identity) to those from the family Ectothiorhodospiraceae. Surprisingly, no authentic PCR products for arsenite oxidase (aoxB) were obtained, despite observing aerobic arsenite oxidation activity. Collectively, these results demonstrate close linkages of these arsenic redox processes occurring within these biofilms

    Dissimilatory Arsenate Reduction with Sulfide as Electron Donor: Experiments with Mono Lake Water and Isolation of Strain MLMS-1, a Chemoautotrophic Arsenate Respirer

    No full text
    Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H(14)CO(3)(−) into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the δ-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor

    Anaerobic Oxidation of Arsenite in Mono Lake Water and by a Facultative, Arsenite-Oxidizing Chemoautotroph, Strain MLHE-1

    No full text
    Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H(2) or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark (14)CO(2) fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the γ-Proteobacteria. Arsenite oxidation has never been reported for any members of this subgroup of the Proteobacteria

    Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor

    No full text
    A facultative chemoautotrophic bacterium, strain MLHE-1T, was isolated from Mono Lake, an alkaline hypersaline soda lake in California, USA. Cells of strain MLHE-1T were Gram-negative, short motile rods that grew with inorganic electron donors (arsenite, hydrogen, sulfide or thiosulfate) coupled with the reduction of nitrate to nitrite. No aerobic growth was attained with arsenite or sulfide, but hydrogen sustained both aerobic and anaerobic growth. No growth occurred when nitrite or nitrous oxide was substituted for nitrate. Heterotrophic growth was observed under aerobic and anaerobic (nitrate) conditions. Cells of strain MLHE-1T could oxidize but not grow on CO, while CH4 neither supported growth nor was it oxidized. When grown chemoautotrophically, strain MLHE-1T assimilated inorganic carbon via the Calvin-Benson-Bassham reductive pentose phosphate pathway, with the activity of ribulose 1,5-bisphosphate carboxylase (RuBisCO) functioning optimally at 0.1 M NaCl and at pH 7.3. Strain MLHE-1T grew over broad ranges of pH (7.3-10.0; optimum, 9.3), salinity (115-190 g l-1; optimum 30 g l-1) and temperature (113-40 °C; optimum, 30 °C). Phylogenetic analysis of 16S rRNA gene sequences placed strain MLHE-1T in the class Gammaproteobacteria (family Ectothiorhodospiraceae) and most closely related to Alkalispirillum mobile (98.5%) and Alkalilimnicola halodurans (98.6%), although none of these three haloalkaliphilic micro-organisms were capable of photoautotrophic growth and only strain MLHE-1T was able to oxidize As(III). On the basis of physiological characteristics and DNA-DNA hybridization data, it is suggested that strain MLHE-1T represents a novel species within the genus Alkalilimnicola for which the name Alkalilimnicola ehrlichii is proposed. The type strain is MLHE-1T (=DSM 17681T =ATCC BAA-1101T). Aspects of the annotated full genome of Alkalilimnicola ehrlichii are discussed in the light of its physiology. © 2007 IUMS

    Response to comments on A bacterium that can grow using arsenic instead of phosphorus

    No full text
    Concerns have been raised about our recent study suggesting that arsenic (As) substitutes for phosphorus in major biomolecules of a bacterium that tolerates extreme As concentrations. We welcome the opportunity to better explain our methods and results and to consider alternative interpretations. We maintain that our interpretation of As substitution, based on multiple congruent lines of evidence, is viable
    corecore