115 research outputs found

    Glycogenosis type II : cloning and characterization of the human lysosomal α-glucosidase gene

    Get PDF
    Glycogenosis type II is a lysosomal storage disorder. Characteristic features are heart failure and generalized muscle weakness. The disease is caused by the inherited deficiency of acid α-glucosidase, the enzyme responsible for the degradation of lysosomal glycogen. The aim of the work described in this thesis was to isolate and decipher the genetic code for acid α-glucosidase, and to study the relation between enzyme structure and functio

    Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation

    Get PDF
    The granulocyte colony-stimulating factor receptor (G-CSF-R) transduces signals important for the proliferation and maturation of myeloid progenitor cells. To identify functionally important regions in the cytoplasmic domain of the G-CSF-R, we compared the actions of the wild-type receptor, two mutants, and a natural splice variant in transfectants of the mouse pro-B cell line BAF3 and two myeloid cell lines, 32D and L-GM. A region of 55 amino acids adjacent to the transmembrane domain was found to be sufficient for generating a growth signal. The immediate downstream sequence of 30 amino acids substantially enhanced the growth signaling in the three cell lines. In contrast, the carboxy-terminal part of 98 amino acids strongly inhibited growth signaling in the two myeloid cell lines but not in BAF3 cells. Truncation of this region lead to an inability of the G-CSF-R to transduce maturation signals in L-GM cells. An alternative carboxy tail present in a splice variant of the G-CSF-R also inhibited growth signaling, notably in both the myeloid cells and BAF3 cells, but appeared not to be involved in maturation

    Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia

    Get PDF
    Severe congenital neutropenia (Kostmann syndrome) is characterized by profound absolute neutropenia and a maturation arrest of marrow progenitor cells at the promyelocyte-myelocyte stage. Marrow cells from such patients frequently display a reduced responsiveness to granulocyte-colony-stimulating factor (G-CSF). G-CSF binds to and activates a specific receptor which transduces signals critical for the proliferation and maturation of granulocytic progenitor cells. Here we report the identification of a somatic point mutation in one allele of the G-CSF receptor gene in a patient with severe congenital neutropenia. The mutation results in a cytoplasmic truncation of the receptor. When expressed in murine myeloid cells, the mutant receptor transduced a strong growth signal but, in contrast to the wild-type G-CSF receptor, was defective in maturation induction. The mutant receptor chain may act in a dominant negative manner to block granulocytic maturation

    Is routine karyotyping required in prenatal samples with a molecular or metabolic referral?

    Get PDF
    As a routine, karyotyping of invasive prenatal samples is performed as an adjunct to referrals for DNA mutation detection and metabolic testing. We performed a retrospective study on 500 samples to assess the diagnostic value of this procedure. These samples included 454 (90.8%) chorionic villus (CV) and 46 (9.2%) amniocenteses specimens. For CV samples karyotyping was based on analyses of both short-term culture (STC) and long-term culture (LTC) cells. Overall, 19 (3.8%) abnormal karyotypes were denoted: four with a common aneuploidy (trisomy 21, 18 and 13), two with a sex chromosomal aneuploidy (Klinefelter syndrome), one with a sex chromosome mosaicism and twelve with various autosome mosaicisms. In four cases a second invasive test was performed because of an abnormal finding in the STC. Taken together, we conclude that STC and LTC karyotyping has resulted in a diagnostic yield of 19 (3.8%) abnormal cases, including 12 cases (2.4%) with an uncertain significance. From a diagnostic point of view, it is desirable to limit uncertain test results as secondary test findings. Therefore, we recommend a more targeted assay, such as e.g. QF-PCR, as a replacement of the STC and to provide parents the autonomy to choose between karyotyping and QF-PCR

    TRPC6 single nucleotide polymorphisms and progression of idiopathic membranous nephropathy

    Get PDF
    Background: Activating mutations in the Transient Receptor Potential channel C6 (TRPC6) cause autosomal dominant focal segmental glomerular sclerosis (FSGS). TRPC6 expression is upregulated in renal biopsies of patients with idiopathic membranous glomerulopathy (iMN) and animal models thereof. In iMN, disease progression is characterized by glomerulosclerosis. In addition, a context-dependent TRPC6 overexpression was recently suggested in complement-mediated podocyte injury in e.g. iMN. Hence, we hypothesized that genetic variants in TRPC6 might affect susceptibility to development or progression of iMN. Methods & Results: Genomic DNA was isolated from blood samples of 101 iMN patients and 292 controls. By direct sequencing of the entire TRPC6 gene, 13 single nucleotide polymorphisms (SNPs) were identified in the iMN cohort, two of which were causing an amino acid substitution (rs3802829; Pro15Ser and rs36111323, Ala404Val). No statistically significant differences in genotypes or allele frequencies between patients and controls were observed. Clinical outcome in patients was determined (remission n = 26, renal failure n = 46, persistent proteinuria n = 29, follow-up median 80 months {range 51-166}). The 13 identified SNPs showed no association with remission or renal failure. There were no differences in genotypes or allele frequencies between patients in remission and progressors. Conclusions: Our data suggest that TRPC6 polymorphisms do not affect susceptibility to iMN, or clinical outcome in iMN

    Residual N-acetyl-α-glucosaminidase activity in fibroblasts correlates with disease severity in patients with mucopolysaccharidosis type IIIB

    Get PDF
    Background: Mucopolysaccharidosis type IIIB (MPS IIIB) is a rare genetic disorder in which the deficiency of the lysosomal enzyme N-acetyl-α-glucosaminidase (NAGLU) results in the accumulation of heparan sulfate (HS), leading to progressive neurocognitive deterioration. In MPS IIIB a wide spectrum of disease severity is seen. Due to a large allelic heterogeneity, establishing genotype-phenotype correlations is difficult. However, reliable prediction of the natural course of the disease is needed, in particular for the assessment of the efficacy of potential therapies. Methods: To identify markers that correlate with disease severity, all Dutch patients diagnosed with MPS IIIB were characterised as either rapid (RP; classical, severe phenotype) or slow progressors (SP; non-classical, less severe phenotype), based on clinical data. NAGLU activity and HS levels were measured in patients’ fibroblasts after culturing at different temperatures. Results: A small, though significant difference in NAGLU activity was measured between RP and SP patients after culturing at 37 °C (p < 0.01). Culturing at 30 °C resulted in more pronounced and significantly higher NAGLU activity levels in SP patients (p < 0.001) with a NAGLU activity of 0.58 nmol.mg-1.hr-1 calculated to be the optimal cut-off value to distinguish between the groups (sensitivity and specificity 100 %). A lower capacity of patients’ fibroblasts to increase NAGLU activity at 30 °C could significantly predict for the loss of several disease specific functions. Conclusion: NAGLU activity in fibroblasts cultured at 30 °C can be used to discriminate between RP and SP MPS IIIB patients and the capacity of cells to increase NAGLU activity at lower temperatures correlates with disease symptoms

    The Results of CHD7 Analysis in Clinically Well-Characterized Patients with Kallmann Syndrome

    Get PDF
    Item does not contain fulltextCONTEXT: Kallmann syndrome (KS) and CHARGE syndrome are rare heritable disorders in which anosmia and hypogonadotropic hypogonadism co-occur. KS is genetically heterogeneous, and there are at least eight genes involved in its pathogenesis, whereas CHARGE syndrome is caused by autosomal dominant mutations in only one gene, the CHD7 gene. Two independent studies showed that CHD7 mutations can also be found in a minority of KS patients. OBJECTIVE: We aimed to investigate whether CHD7 mutations can give rise to isolated KS or whether additional features of CHARGE syndrome always occur. DESIGN: We performed CHD7 analysis in a cohort of 36 clinically well-characterized Dutch patients with KS but without mutations in KAL1 and with known status for the KS genes with incomplete penetrance, FGFR1, PROK2, PROKR2, and FGF8. RESULTS: We identified three heterozygous CHD7 mutations. The CHD7-positive patients were carefully reexamined and were all found to have additional features of CHARGE syndrome. CONCLUSION: The yield of CHD7 analysis in patients with isolated KS seems very low but increases when additional CHARGE features are present. Therefore, we recommend performing CHD7 analysis in KS patients who have at least two additional CHARGE features or semicircular canal anomalies. Identifying a CHD7 mutation has important clinical implications for the surveillance and genetic counseling of patients

    Sequence variants of the DFNB31 gene among Usher syndrome patients of diverse origin

    Get PDF
    Contains fulltext : 89306.pdf (publisher's version ) (Open Access)PURPOSE: It has been demonstrated that mutations in deafness, autosomal recessive 31 (DFNB31), the gene encoding whirlin, is responsible for nonsyndromic hearing loss (NSHL; DFNB31) and Usher syndrome type II (USH2D). We screened DFNB31 in a large cohort of patients with different clinical subtypes of Usher syndrome (USH) to determine the prevalence of DFNB31 mutations among USH patients. METHODS: DFNB31 was screened in 149 USH2, 29 USH1, six atypical USH, and 11 unclassified USH patients from diverse ethnic backgrounds. Mutation detection was performed by direct sequencing of all coding exons. RESULTS: We identified 38 different variants among 195 patients. Most variants were clearly polymorphic, but at least two out of the 15 nonsynonymous variants (p.R350W and p.R882S) are predicted to impair whirlin structure and function, suggesting eventual pathogenicity. No putatively pathogenic mutation was found in the second allele of patients with these mutations. CONCLUSIONS: DFNB31 is not a major cause of USH
    • …
    corecore