75 research outputs found

    Phosphorylation of Arabidopsis UVR8 photoreceptor modulates protein interactions and responses to UV-B radiation

    Get PDF
    Exposure of plants to ultraviolet-B (UV-B) radiation initiates transcriptional responses that modify metabolism, physiology and development to enhance viability in sunlight. Many of these regulatory responses to UV-B radiation are mediated by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8). Following photoreception, UVR8 interacts directly with multiple proteins to regulate gene expression, but the mechanisms that control differential protein binding to initiate distinct responses are unknown. Here we show that UVR8 is phosphorylated at several sites and that UV-B stimulates phosphorylation at Serine 402. Site-directed mutagenesis to mimic Serine 402 phosphorylation promotes binding of UVR8 to REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins, which negatively regulate UVR8 action. Complementation of the uvr8 mutant with phosphonull or phosphomimetic variants suggests that phosphorylation of Serine 402 modifies UVR8 activity and promotes flavonoid biosynthesis, a key UV-B-stimulated response that enhances plant protection and crop nutritional quality. This research provides a basis to understand how UVR8 interacts differentially with effector proteins to regulate plant responses to UV-B radiation.</p

    The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling

    No full text
    Light is a critical signal to integrate plant growth and development with the environment. Downstream of photoreceptors, the E3 ubiquitin ligase COP1/SPA is a key repressor of photomorphogenesis which targets many positive regulators of light signaling, mainly transcription factors, for degradation in darkness. In light-grown plants COP1/SPA activity is repressed, allowing light responses to occur. This review provides an overview on our current knowledge on COP1/SPA repressor function, focusing in particular on the roles of the respective protein domains and the mechanisms of light-induced inactivation of COP1/SPA. Moreover, we summarize how COP1 activity is regulated by other interacting proteins, such as a SUMO E3 ligase and Phytochrome-Interacting Factors (PIFs), as well as by hormones. At last, several novel functions of COP1 that were recently revealed are included

    Signaling Mechanisms by Arabidopsis Cryptochromes

    No full text
    Cryptochromes (CRYs) are blue light photoreceptors that regulate growth, development, and metabolism in plants. In Arabidopsis thaliana (Arabidopsis), CRY1 and CRY2 possess partially redundant and overlapping functions. Upon exposure to blue light, the monomeric inactive CRYs undergo phosphorylation and oligomerization, which are crucial to CRY function. Both the N- and C-terminal domains of CRYs participate in light-induced interaction with multiple signaling proteins. These include the COP1/SPA E3 ubiquitin ligase, several transcription factors, hormone signaling intermediates and proteins involved in chromatin-remodeling and RNA N6 adenosine methylation. In this review, we discuss the mechanisms of Arabidopsis CRY signaling in photomorphogenesis and the recent breakthroughs in Arabidopsis CRY research

    COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions

    No full text
    In Arabidopsis and many other plant species, anthocyanin pigments accumulate only after light exposure and not in darkness. Excess light of very high fluence rates leads to a further, very strong increase in anthocyanin levels. How excess light is sensed is not well understood. Here, we show that mutations in the key repressor of light signaling, the COP1/SPA complex, cause a strong hyperaccumulation of anthocyanins not only under normal light but also under excess, high light conditions. Hence, normal light signaling via COP1/SPA is required to prevent hyperaccumulation of anthocyanins under these high light conditions. However, since cop1 and spa mutants show a similar high-light responsiveness of anthocyanin accumulation as the wild type it remains to be resolved whether COP1/SPA is directly involved in the high-light response itself

    Illuminating the COP1/SPA Ubiquitin Ligase: Fresh Insights Into Its Structure and Functions During Plant Photomorphogenesis

    No full text
    CONSTITUTIVE PHOTOMORPHOGENIC 1 functions as an E3 ubiquitin ligase in plants and animals. Discovered originally in Arabidopsis thaliana, COP1 acts in a complex with SPA proteins as a central repressor of light-mediated responses in plants. By ubiquitinating and promoting the degradation of several substrates, COP1/SPA regulates many aspects of plant growth, development and metabolism. In contrast to plants, human COP1 acts as a crucial regulator of tumorigenesis. In this review, we discuss the recent important findings in COP1/SPA research including a brief comparison between COP1 activity in plants and humans

    Auxin - a novel regulator of stomata differentiation

    No full text
    Three recent publications identify the phytohormone auxin as a novel regulator of stomata development and distribution. We discuss how auxin signaling and polar auxin transport blend in with the established signaling network that controls cell division and differentiation within the stomatal cell lineage

    New Insights on the Regulation of Glucosinolate Biosynthesis via COP1 and DELLA Proteins in Arabidopsis Thaliana

    Get PDF
    The biosynthesis of defensive secondary metabolites, such as glucosinolates (GSLs), is a costly process, which requires nutrients, ATP, and reduction equivalents, and, therefore, needs well-orchestrated machinery while coordinating defense and growth. We discovered that the key repressor of light signaling, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYTOCHROME A-105 (COP1/SPA) complex, is a crucial component of GSL biosynthesis regulation. Various mutants in this COP1/SPA complex exhibited a strongly reduced level of GSL and a low expression of jasmonate (JA)-dependent genes. Furthermore, cop1, which is known to accumulate DELLA proteins in the dark, shows reduced gibberellin (GA) and JA signaling, thereby phenocopying other DELLA-accumulating mutants. This phenotype can be complemented by a dominant gain-of-function allele of MYC3 and by crossing with a mutant having low DELLA protein levels. Hence, SPA1 interacts with DELLA proteins in a yeast two-hybrid screen, whereas high levels of DELLA inhibit MYC function and suppress JA signaling. DELLA accumulation leads to reduced synthesis of GSL and inhibited growth. Thus, the COP1/SPA-mediated degradation of DELLA not only affects growth but also regulates the biosynthesis of GSLs
    corecore