89 research outputs found

    An Investigation into Glomeruli Detection in Kidney H&E and PAS Images using YOLO

    Full text link
    Context: Analyzing digital pathology images is necessary to draw diagnostic conclusions by investigating tissue patterns and cellular morphology. However, manual evaluation can be time-consuming, expensive, and prone to inter- and intra-observer variability. Objective: To assist pathologists using computerized solutions, automated tissue structure detection and segmentation must be proposed. Furthermore, generating pixel-level object annotations for histopathology images is expensive and time-consuming. As a result, detection models with bounding box labels may be a feasible solution. Design: This paper studies. YOLO-v4 (You-Only-Look-Once), a real-time object detector for microscopic images. YOLO uses a single neural network to predict several bounding boxes and class probabilities for objects of interest. YOLO can enhance detection performance by training on whole slide images. YOLO-v4 has been used in this paper. for glomeruli detection in human kidney images. Multiple experiments have been designed and conducted based on different training data of two public datasets and a private dataset from the University of Michigan for fine-tuning the model. The model was tested on the private dataset from the University of Michigan, serving as an external validation of two different stains, namely hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS). Results: Average specificity and sensitivity for all experiments, and comparison of existing segmentation methods on the same datasets are discussed. Conclusions: Automated glomeruli detection in human kidney images is possible using modern AI models. The design and validation for different stains still depends on variability of public multi-stain datasets

    Tissue-specific regulation of ACE/ACE2 and AT 1 /AT 2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-α knock-out mice: Oestrogen regulation of ACE/ACE2 and AT1/AT2

    Get PDF
    ACE and ACE2 and the AT1 and AT2 receptors are pivotal points of regulation in the renin-angiotensin system. ACE and ACE2 are key enzymes in the formation and degradation of Ang II and Ang-(1-7). Ang II acts at either the AT1 or the AT2 receptor to mediate opposing actions of vasoconstriction/vasodilation. While it is known that estrogen (E2) acts to down-regulate ACE and the AT1 receptors, its regulation of ACE2 and the AT2 receptor and the involvement of a specific estrogen receptor subtype are unknown. To investigate the role of estrogen receptor-α (ERα) in estrogen’s regulation of ACE/ACE2 and AT1/AT2 mRNAs in lung and kidney, ovariectomized female mice lacking apolipoprotein E (ee) with the ERα (AAee) or without the ERα (ααee) were treated with 17-β estradiol (6 µg/day) or placebo for 3 months. ACE,ACE2 and AT1/AT2 receptor mRNAs were measured using reverse transcriptase, real-time polymerase chain reaction (RT/RT-PCR). In the kidney, 17-β estradiol showed 1.7 fold down-regulation of ACE mRNA in AAee mice, with 2.1-fold up-regulation of ACE mRNA in ααee mice. 17-β estradiol showed 1.5 and 1.8 fold down-regulation of ACE2 and AT1 receptor mRNA in AAee mice; this regulation was lost in ααee mice. 17-β estradiol showed marked (81-fold) up-regulation of the AT2 receptor mRNA in AAee mice. In the lung 17-β estradiol treatment had no effect on AT1 receptor mRNA in AAee mice, but resulted in a 1.5-fold decreased regulation of AT1 mRNA in ααee. There was no significant interaction of estrogen with ER in the lung for ACE, ACE2, and AT2 receptor genes. These studies reveal tissue specific regulation by 17-β estradiol of ACE/ACE2 and AT1/AT2 receptor genes with the ERα receptor primarily responsible for the regulation of kidney ACE2 , AT1 receptor, and AT2 receptor genes

    The Application of Digital Pathology to Improve Accuracy in Glomerular Enumeration in Renal Biopsies.

    Get PDF
    BACKGROUND: In renal biopsy reporting, quantitative measurements, such as glomerular number and percentage of globally sclerotic glomeruli, is central to diagnostic accuracy and prognosis. The aim of this study is to determine the number of glomeruli and percent globally sclerotic in renal biopsies by means of registration of serial tissue sections and manual enumeration, compared to the numbers in pathology reports from routine light microscopic assessment. DESIGN: We reviewed 277 biopsies from the Nephrotic Syndrome Study Network (NEPTUNE) digital pathology repository, enumerating 9,379 glomeruli by means of whole slide imaging. Glomerular number and the percentage of globally sclerotic glomeruli are values routinely recorded in the official renal biopsy pathology report from the 25 participating centers. Two general trends in reporting were noted: total number per biopsy or average number per level/section. Both of these approaches were assessed for their accuracy in comparison to the analogous numbers of annotated glomeruli on WSI. RESULTS: The number of glomeruli annotated was consistently higher than those reported (p CONCLUSIONS: Although glass slides were not available for direct comparison to whole slide image annotation, this study indicates that routine manual light microscopy assessment of number of glomeruli is inaccurate, and the magnitude of this error is proportional to the total number of glomeruli

    The Application of Digital Pathology to Improve Accuracy in Glomerular Enumeration in Renal Biopsies

    Get PDF
    In renal biopsy reporting, quantitative measurements, such as glomerular number and percentage of globally sclerotic glomeruli, is central to diagnostic accuracy and prognosis. The aim of this study is to determine the number of glomeruli and percent globally sclerotic in renal biopsies by means of registration of serial tissue sections and manual enumeration, compared to the numbers in pathology reports from routine light microscopic assessment

    Reproducibility of the NEPTUNE descriptor-based scoring system on whole-slide images and histologic and ultrastructural digital images

    Get PDF
    The multicenter Nephrotic Syndrome Study Network (NEPTUNE) digital pathology scoring system employs a novel and comprehensive methodology to document pathologic features from whole-slide images, immunofluorescence and ultrastructural digital images. To estimate inter- and intra-reader concordance of this descriptor-based approach, data from 12 pathologists (eight NEPTUNE and four non-NEPTUNE) with experience from training to 30 years were collected. A descriptor reference manual was generated and a webinar-based protocol for consensus/cross-training implemented. Intra-reader concordance for 51 glomerular descriptors was evaluated on jpeg images by seven NEPTUNE pathologists scoring 131 glomeruli three times (Tests I, II, and III), each test following a consensus webinar review. Inter-reader concordance of glomerular descriptors was evaluated in 315 glomeruli by all pathologists; interstitial fibrosis and tubular atrophy (244 cases, whole-slide images) and four ultrastructural podocyte descriptors (178 cases, jpeg images) were evaluated once by six and five pathologists, respectively. Cohen’s kappa for inter-reader concordance for 48/51 glomerular descriptors with sufficient observations was moderate (0.40<kappa ≤0.60) for 17 and good (0.60<kappa ≤0.80) for 8, for 52% with moderate or better kappas. Clustering of glomerular descriptors based on similar pathologic features improved concordance. Concordance was independent of years of experience, and increased with webinar cross-training. Excellent concordance was achieved for interstitial fibrosis and tubular atrophy. Moderate-to-excellent concordance was achieved for all ultrastructural podocyte descriptors, with good-to-excellent concordance for descriptors commonly used in clinical practice, foot process effacement, and microvillous transformation. NEPTUNE digital pathology scoring system enables novel morphologic profiling of renal structures. For all histologic and ultrastructural descriptors tested with sufficient observations, moderate-to-excellent concordance was seen for 31/54 (57%). Descriptors not sufficiently represented will require further testing. This study proffers the NEPTUNE digital pathology scoring system as a model for standardization of renal biopsy interpretation extendable outside the NEPTUNE consortium, enabling international collaborations

    Responsiveness of sphingosine phosphate lyase insufficiency syndrome to vitamin B6 cofactor supplementation

    Full text link
    Sphingosine- 1- phosphate (S1P) lyase is a vitamin B6- dependent enzyme that degrades sphingosine- 1- phosphate in the final step of sphingolipid metabolism. In 2017, a new inherited disorder was described caused by mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). This condition is referred to as SPL insufficiency syndrome (SPLIS) or alternatively as nephrotic syndrome type 14 (NPHS14). Patients with SPLIS exhibit lymphopenia, nephrosis, adrenal insufficiency, and/or neurological defects. No targeted therapy for SPLIS has been reported. Vitamin B6 supplementation has therapeutic activity in some genetic diseases involving B6- dependent enzymes, a finding ascribed largely to the vitamin’s chaperone function. We investigated whether B6 supplementation might have activity in SPLIS patients. We retrospectively monitored responses of disease biomarkers in patients supplemented with B6 and measured SPL activity and sphingolipids in B6- treated patient- derived fibroblasts. In two patients, disease biomarkers responded to B6 supplementation. S1P abundance and activity levels increased and sphingolipids decreased in response to B6. One responsive patient is homozygous for an SPL R222Q variant present in almost 30% of SPLIS patients. Molecular modeling suggests the variant distorts the dimer interface which could be overcome by cofactor supplementation. We demonstrate the first potential targeted therapy for SPLIS and suggest that 30% of SPLIS patients might respond to cofactor supplementation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162713/2/jimd12238.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162713/1/jimd12238_am.pd

    Endogenous adenine mediates kidney injury in diabetic models and predicts diabetic kidney disease in patients

    Get PDF
    Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality; however, few mechanistic biomarkers are available for high-risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from the Chronic Renal Insufficiency Cohort (CRIC) study, the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes (SMART2D), and the American Indian Study determined whether urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in the CRIC study and SMART2D. ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in the CRIC study, SMART2D, and the American Indian study. Empagliflozin lowered UAdCR in nonmacroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology, and single-cell transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mTOR. Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.</p

    Safety of procuring research tissue during a clinically indicated kidney biopsy from patients with lupus: data from the Accelerating Medicines Partnership RA/SLE Network

    Get PDF
    Objectives In lupus nephritis the pathological diagnosis from tissue retrieved during kidney biopsy drives treatment and management. Despite recent approval of new drugs, complete remission rates remain well under aspirational levels, necessitating identification of new therapeutic targets by greater dissection of the pathways to tissue inflammation and injury. This study assessed the safety of kidney biopsies in patients with SLE enrolled in the Accelerating Medicines Partnership, a consortium formed to molecularly deconstruct nephritis.Methods 475 patients with SLE across 15 clinical sites in the USA consented to obtain tissue for research purposes during a clinically indicated kidney biopsy. Adverse events (AEs) were documented for 30 days following the procedure and were determined to be related or unrelated by all site investigators. Serious AEs were defined according to the National Institutes of Health reporting guidelines.Results 34 patients (7.2%) experienced a procedure-related AE: 30 with haematoma, 2 with jets, 1 with pain and 1 with an arteriovenous fistula. Eighteen (3.8%) experienced a serious AE requiring hospitalisation; four patients (0.8%) required a blood transfusion related to the kidney biopsy. At one site where the number of cores retrieved during the biopsy was recorded, the mean was 3.4 for those who experienced a related AE (n=9) and 3.07 for those who did not experience any AE (n=140). All related AEs resolved.Conclusions Procurement of research tissue should be considered feasible, accompanied by a complication risk likely no greater than that incurred for standard clinical purposes. In the quest for targeted treatments personalised based on molecular findings, enhanced diagnostics beyond histology will likely be required

    Digital pathology in nephrology clinical trials, research, and pathology practice

    No full text
    In this review, we will discuss (i) how the recent advancements in digital technology and computational engineering are currently applied to nephropathology in the setting of clinical research, trials, and practice; (ii) the benefits of the new digital environment; (iii) how recognizing its challenges provides opportunities for transformation; and (iv) nephropathology in the upcoming era of kidney precision and predictive medicine. Recent studies highlighted how new standardized protocols facilitate the harmonization of digital pathology database infrastructure and morphologic, morphometric, and computer-aided quantitative analyses. Digital pathology enables robust protocols for clinical trials and research, with the potential to identify previously underused or unrecognized clinically useful parameters. The integration of digital pathology with molecular signatures is leading the way to establishing clinically relevant morpho-omic taxonomies of renal diseases. The introduction of digital pathology in clinical research and trials, and the progressive implementation of the modern software ecosystem, opens opportunities for the development of new predictive diagnostic paradigms and computer-aided algorithms, transforming the practice of renal disease into a modern computational science
    corecore