21 research outputs found

    Insight into the function of the obturator internus muscle in humans: observations with development and validation of an electromyography recording technique

    Get PDF
    There are no direct recordings of obturator internus muscle activity in humans because of difficult access for electromyography (EMG) electrodes. Functions attributed to this muscle are based on speculation and include hip external rotation/abduction, and a role in stabilization as an "adjustable ligament" of the hip. Here we present (1) a technique to insert intramuscular EMG electrodes into obturator internus plus (2) the results of an investigation of obturator internus activity relative to that of nearby hip muscles during voluntary hip efforts in two hip positions and a weight-bearing task. Fine-wire electrodes were inserted with ultrasound guidance into obturator internus, gluteus maximus, piriformis and quadratus femoris in ten participants. Participants performed ramped and maximal isometric hip efforts (open kinetic chain) into flexion/extension, abduction/adduction, and internal/external rotation, and hip rotation to end range in standing. Analysis of the relationship between activity of the obturator internus and the other hip muscles provided evidence of limited contamination of the recordings with crosstalk. Obturator internus EMG amplitude was greatest during hip extension, then external rotation then abduction, with minimal to no activation in other directions. Obturator internus EMG was more commonly the first muscle active during abduction and external rotation than other muscles. This study describes a viable and valid technique to record obturator internus EMG and provides the first evidence of its activation during simple functions. The observation of specificity of activation to certain force directions questions the hypothesis of a general role in hip stabilisation regardless of force direction

    Introduction: Toward an Engaged Feminist Heritage Praxis

    Get PDF
    We advocate a feminist approach to archaeological heritage work in order to transform heritage practice and the production of archaeological knowledge. We use an engaged feminist standpoint and situate intersubjectivity and intersectionality as critical components of this practice. An engaged feminist approach to heritage work allows the discipline to consider women’s, men’s, and gender non-conforming persons’ positions in the field, to reveal their contributions, to develop critical pedagogical approaches, and to rethink forms of representation. Throughout, we emphasize the intellectual labor of women of color, queer and gender non-conforming persons, and early white feminists in archaeology

    A biomechanical assessment of selected patient transfers: the effects of instruction and experience for improving thoracolumbar motions and electromyographic muscle activities

    Get PDF
    Billions of dollars are being spent each year in North America alone on the treatment and compensation of low back disorders (LBD) related to work processes. Nursing characterizes one of those professions at high risk for the development of LBD. Previous research has identified that patient handling has been the leading cause of occupationally-related LBD for nurses. In response to a need for ergonomic intervention, the Back Injury Prevention Program (BIPP) was introduced in Newfoundland in 1989. While there was some anecdotal evidence that this macro-ergonomic approach was successful in reducing risk of injury, there has been no reported biomechanical evidence that the patient transfer techniques prescribed by BIPP were related to these reductions. The purpose of this study was to examine whether instruction in BIPP transfer techniques is related to beneficial changes in biomechanics metrics thought to be associated with risk for developing LPB. Two comparisons were considered in this model. First, novice subjects were compared prior to and following a standardized BIPP training session, specific to three patient transfer techniques. Secondly, an experienced group of active institutional nurses were measured while performing the same tasks. These transfers were selected based on their history of high incidence of injury and included repositioning a patient to the head of the bed from a side-on position and a position superior to the patient's head and a transfer from a sitting bed position to a wheelchair. Bilateral electromyography (EMG) and a Lumbar Motion Monitor (LMM) were employed to monitor each subject during the execution of a task. Results suggest that BIPP principles for patient transfers reflect sound biomechanical principle, as participant experience increased, the biomechanical demands decreased. Further investigations should consider the administrative controls involved in the implementation of this program in the workplace

    Evidence for a Common Role for the Serine-Type Plasmodium falciparum Serine Repeat Antigen Proteases: Implications for Vaccine and Drug Design▿ †

    No full text
    Serine repeat antigens (SERAs) are a family of secreted “cysteine-like” proteases of Plasmodium parasites. Several SERAs possess an atypical active-site serine residue in place of the canonical cysteine. The human malaria parasite Plasmodium falciparum possesses six “serine-type” (SERA1 to SERA5 and SERA9) and three “cysteine-type” (SERA6 to SERA8) SERAs. Here, we investigate the importance of the serine-type SERAs to blood-stage parasite development and examine the extent of functional redundancy among this group. We attempted to knock out the four P. falciparum serine-type SERA genes that have not been disrupted previously. SERA1, SERA4, and SERA9 knockout lines were generated, while only SERA5, the most strongly expressed member of the SERA family, remained refractory to genetic deletion. Interestingly, we discovered that while SERA4-null parasites completed the blood-stage cycle normally, they exhibited a twofold increase in the level of SERA5 mRNA. The inability to disrupt SERA5 and the apparent compensatory increase in SERA5 expression in response to the deletion of SERA4 provides evidence for an important blood-stage function for the serine-type SERAs and supports the notion of functional redundancy among this group. Such redundancy is consistent with our phylogenetic analysis, which reveals a monophyletic grouping of the serine-type SERAs across the genus Plasmodium and a predominance of postspeciation expansion. While SERA5 is to some extent further validated as a target for vaccine and drug development, our data suggest that the expression level of other serine-type SERAs is the only barrier to escape from anti-SERA5-specific interventions

    Inhibition of Malaria Parasite Development by a Cyclic Peptide That Targets the Vital Parasite Protein SERA5▿

    No full text
    The serine repeat antigen (SERA) proteins of the malaria parasites Plasmodium spp. contain a putative enzyme domain similar to that of papain family cysteine proteases. In Plasmodium falciparum parasites, more than half of the SERA family proteins, including the most abundantly expressed form, SERA5, have a cysteine-to-serine substitution within the putative catalytic triad of the active site. Although SERA5 is required for blood-stage parasite survival, the occurrence of a noncanonical catalytic triad casts doubt on the importance of the enzyme domain in this function. We used phage display to identify a small (14-residue) disulfide-bonded cyclic peptide (SBP1) that targets the enzyme domain of SERA5. Biochemical characterization of the interaction shows that it is dependent on the conformation of both the peptide and protein. Addition of this peptide to parasite cultures compromised development of late-stage parasites compared to that of control parasites or those incubated with equivalent amounts of the carboxymethylated peptide. This effect was similar in two different strains of P. falciparum as well as in a transgenic strain where the gene encoding the related serine-type parasitophorous vacuole protein SERA4 was deleted. In compromised parasites, the SBP1 peptide crosses both the erythrocyte and parasitophorous vacuole membranes and accumulates within the parasitophorous vacuole. In addition, both SBP1 and SERA5 were identified in the parasite cytosol, indicating that the plasma membrane of the parasite was compromised as a result of SBP1 treatment. These data implicate an important role for SERA5 in the regulation of the intraerythrocytic development of late-stage parasites and as a target for drug development
    corecore