3 research outputs found
Signaling, Entanglement, and Quantum Evolution Beyond Cauchy Horizons
Consider a bipartite entangled system half of which falls through the event
horizon of an evaporating black hole, while the other half remains coherently
accessible to experiments in the exterior region. Beyond complete evaporation,
the evolution of the quantum state past the Cauchy horizon cannot remain
unitary, raising the questions: How can this evolution be described as a
quantum map, and how is causality preserved? What are the possible effects of
such nonstandard quantum evolution maps on the behavior of the entangled
laboratory partner? More generally, the laws of quantum evolution under extreme
conditions in remote regions (not just in evaporating black-hole interiors, but
possibly near other naked singularities and regions of extreme spacetime
structure) remain untested by observation, and might conceivably be non-unitary
or even nonlinear, raising the same questions about the evolution of entangled
states. The answers to these questions are subtle, and are linked in unexpected
ways to the fundamental laws of quantum mechanics. We show that terrestrial
experiments can be designed to probe and constrain exactly how the laws of
quantum evolution might be altered, either by black-hole evaporation, or by
other extreme processes in remote regions possibly governed by unknown physics.Comment: Combined, revised, and expanded version of quant-ph/0312160 and
hep-th/0402060; 13 pages, RevTeX, 2 eps figure