5 research outputs found

    The respiratory pressure-abdominal volume curve in a porcine model

    Get PDF
    Background: Increasing intra-abdominal volume (IAV) can lead to intra-abdominal hypertension (IAH) or abdominal compartment syndrome. Both are associated with raised morbidity and mortality. IAH can increase airway pressures and impair ventilation. The relationship between increasing IAV and airway pressures is not known. We therefore assessed the effect of increasing IAV on airway and intra-abdominal pressures (IAP). Methods: Seven pigs (41.4 +/−8.5 kg) received standardized anesthesia and mechanical ventilation. A latex balloon inserted in the peritoneal cavity was inflated in 1-L increments until IAP exceeded 40 cmH2O. Peak airway pressure (pPAW), respiratory compliance, and IAP (bladder pressure) were measured. Abdominal compliance was calculated. Different equations were tested that best described the measured pressure-volume curves. Results: An exponential equation best described the measured pressure-volume curves. Raising IAV increased pPAW and IAP in an exponential manner. Increases in IAP were associated with parallel increases in pPAW with an approximate 40% transmission of IAP to pPAW. The higher the IAP, the greater IAV effected pPAW and IAP. Conclusions: The exponential nature of the effect of IAV on pPAW and IAP implies that, in the presence of high grades of IAH, small reductions in IAV can lead to significant reductions in airway and abdominal pressures. Conversely, in the presence of normal IAP levels, large increases in IAV may not affect airway and abdominal pressures

    Commonly applied positive end-expiratory pressures do not prevent functional residual capacity decline in the setting of intra-abdominal hypertension: a pig model

    Get PDF
    Introduction Intra-abdominal hypertension is common in critically ill patients and is associated with increased morbidity and mortality. The optimal ventilation strategy remains unclear in these patients. We examined the effect of positive end-expiratory pressures (PEEP) on functional residual capacity (FRC) and oxygen delivery in a pig model of intra-abdominal hypertension. Methods Thirteen adult pigs received standardised anaesthesia and ventilation. We randomised three levels of intra-abdominal pressure (3 mmHg (baseline), 18 mmHg, and 26 mmHg) and four commonly applied levels of PEEP (5, 8, 12 and 15 cmH2O). Intra-abdominal pressures were generated by inflating an intra-abdominal balloon. We measured intra-abdominal (bladder) pressure, functional residual capacity, cardiac output, haemoglobin and oxygen saturation, and calculated oxygen delivery. Results Raised intra-abdominal pressure decreased FRC but did not change cardiac output. PEEP increased FRC at baseline intra-abdominal pressure. The decline in FRC with raised intra-abdominal pressure was partly reversed by PEEP at 18 mmHg intra-abdominal pressure and not at all at 26 mmHg intra-abdominal pressure. PEEP significantly decreased cardiac output and oxygen delivery at baseline and at 26 mmHg intra-abdominal pressure but not at 18 mmHg intra-abdominal pressure. Conclusions In a pig model of intra-abdominal hypertension, PEEP up to 15 cmH2O did not prevent the FRC decline caused by intra-abdominal hypertension and was associated with reduced oxygen delivery as a consequence of reduced cardiac output. This implies that PEEP levels inferior to the corresponding intra-abdominal pressures cannot be recommended to prevent FRC decline in the setting of intra-abdominal hypertension

    The role of femoral venous pressure and femoral venous oxygen saturation in the setting of intra-abdominal hypertension: A pig model

    No full text
    Femoral venous access is frequently used in critically ill patients. Because raised intra-abdominal pressure (IAP) is also frequently found in this group of patients, we examined the impact of IAP and positive end-expiratory pressure (PEEP) on femoral venous pressure (FVP) and femoral venous oxygen saturation (Sfvo2) in an animal model. Thirteen adult pigs received standardized anesthesia and ventilation. Randomized levels of IAP (3 [baseline], 18, and 26 mmHg) were applied, with levels of PEEP (5, 8, 12, and 15 cmH2O) applied randomly at each IAP level. We measured bladder pressure (IAP), superior vena cava pressure, pulmonary artery pressure, pulmonary artery occlusion pressure, FVP, mixed venous oxygen saturation (Svo2), and Sfvo2. We found that FVP correlated well with IAP (FVP = 4.1 + [0.12 × PEEP] + [1.00 × IAP]; R2 = 0.89, P \u3c 0.001) with a moderate bias and precision of 5.0 and 3.8 mmHg, respectively. Because the level of agreement did not meet the recommendations of the World Society of Abdominal Compartment Syndrome, FVP cannot currently be recommended to measure IAP, and further clinical trials are warranted. However, a raised FVP should prompt the measurement of the bladder pressure. Femoral venous oxygen saturation did correlate neither with Svo2 nor with abdominal perfusion pressure. Therefore, Sfvo2 is of no clinical use in the setting of raised IAP
    corecore