163 research outputs found

    Low Friction Flows of Liquids at Nanopatterned Interfaces

    Full text link
    With the recent important development of microfluidic systems, miniaturization of flow devices has become a real challenge. Microchannels, however, are characterized by a large surface to volume ratio, so that surface properties strongly affect flow resistance in submicrometric devices. We present here results showing that the concerted effect of wetting . properties and surface roughness may considerably reduce friction of the fluid past the boundaries. The slippage of the fluid at the channel boundaries is shown to be drastically increased by using surfaces that are patterned at the nanometer scale. This effect occurs in the regime where the surface pattern is partially dewetted, in the spirit of the 'superhydrophobic' effects that have been recently discovered at the macroscopic scales. Our results show for the first time that, in contrast to the common belief, surface friction may be reduced by surface roughness. They also open the possibility of a controlled realization of the 'nanobubbles' that have long been suspected to play a role in interfacial slippag

    Display of Cell Surface Sites for Fibronectin Assembly Is Modulated by Cell Adherence to 1F3 and C-Terminal Modules of Fibronectin

    Get PDF
    BACKGROUND: Fibronectin-null cells assemble soluble fibronectin shortly after adherence to a substrate coated with intact fibronectin but not when adherent to the cell-binding domain of fibronectin (modules (7)F3-(10)F3). Interactions of adherent cells with regions of adsorbed fibronectin other than modules (7)F3-(10)F3, therefore, are required for early display of the cell surface sites that initiate and direct fibronectin assembly. METHODOLOGY/PRINCIPAL FINDINGS: To identify these regions, coatings of proteolytically derived or recombinant pieces of fibronectin containing modules in addition to (7)F3-(10)F3 were tested for effects on fibronectin assembly by adherent fibronectin-null fibroblasts. Pieces as large as one comprising modules (2)F3-(14)F3, which include the heparin-binding and cell adhesion domains, were not effective in supporting fibronectin assembly. Addition of module (1)F3 or the C-terminal modules to modules (2)F3-(14)F3 resulted in some activity, and addition of both (1)F3 and the C-terminal modules resulted in a construct, (1)F3-C, that best mimicked the activity of a coating of intact fibronectin. Constructs (1)F3-C V0, (1)F3-C V64, and (1)F3-C Delta(V(15)F3(10)F1) were all able to support fibronectin assembly, suggesting that (1)F3 through (11)F1 and/or (12)F1 were important for activity. Coatings in which the active parts of (1)F3-C were present in different proteins were much less active than intact (1)F3-C. CONCLUSIONS: These results suggest that (1)F3 acts together with C-terminal modules to induce display of fibronectin assembly sites on adherent cells

    Infant and child feeding practices: a preliminary investigation

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.The objective of this preliminary investigation was to examine the feeding practices of infants and pre-school children in Adelaide, and thereby contribute to the development of appropriate preventive dental strategies. A stratified random sample of 160 two year old and three year old pre-school children in the Adelaide Statistical District was obtained. Information about feeding practices and use of comforters or ‘dummies’ was obtained through a self-administered questionnaire completed by parents of the selected children. Information was collected for the age periods of 0–3 months, 4–6 months, 7–12 months, 13–24 months and 25–36 months. Most of the children (81.8 per cent) were breast-fed at some stage. However the percentage of children being breast-fed decreased markedly across age periods, particularly to 13–24 months, when only 15.9 per cent of children were being breast-fed. Over half of the children had been bottle-fed with infant formula at some stage. The highest percentage of children being bottle-fed with infant formula occurred in the 4–6 months (42.6 per cent) closely followed by the 7–12 months age period (37.4 per cent). Nearly two-thirds of children were bottle-fed with cow's milk at some stage. The highest percentage of children being bottle-fed with cow's milk occurred in the 13–24 months age period (49.6 per cent). A quarter (24.5 per cent) of the children were put to bed at some stage with a bottle containing cariogenic fluids. The majority of children used a ‘dummy’ at some stage during both day-time and night-time. Parents are in need of advice on appropriate feeding patterns for infants and young children.Amjad H. Wyne,A. John Spencer and Fearnley S. Szuste

    Fibronectin Unfolding Revisited: Modeling Cell Traction-Mediated Unfolding of the Tenth Type-III Repeat

    Get PDF
    Fibronectin polymerization is essential for the development and repair of the extracellular matrix. Consequently, deciphering the mechanism of fibronectin fibril formation is of immense interest. Fibronectin fibrillogenesis is driven by cell-traction forces that mechanically unfold particular modules within fibronectin. Previously, mechanical unfolding of fibronectin has been modeled by applying tensile forces at the N- and C-termini of fibronectin domains; however, physiological loading is likely focused on the solvent-exposed RGD loop in the 10th type-III repeat of fibronectin (10FNIII), which mediates binding to cell-surface integrin receptors. In this work we used steered molecular dynamics to study the mechanical unfolding of 10FNIII under tensile force applied at this RGD site. We demonstrate that mechanically unfolding 10FNIII by pulling at the RGD site requires less work than unfolding by pulling at the N- and C- termini. Moreover, pulling at the N- and C-termini leads to 10FNIII unfolding along several pathways while pulling on the RGD site leads to a single exclusive unfolding pathway that includes a partially unfolded intermediate with exposed hydrophobic N-terminal β-strands – residues that may facilitate fibronectin self-association. Additional mechanical unfolding triggers an essential arginine residue, which is required for high affinity binding to integrins, to move to a position far from the integrin binding site. This cell traction-induced conformational change may promote cell detachment after important partially unfolded kinetic intermediates are formed. These data suggest a novel mechanism that explains how cell-mediated forces promote fibronectin fibrillogenesis and how cell surface integrins detach from newly forming fibrils. This process enables cells to bind and unfold additional fibronectin modules – a method that propagates matrix assembly

    Topical vitamin A treatment of recalcitrant common warts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Common warts (<it>verruca vulgaris</it>) are benign epithelial proliferations associated with human papillomavirus (HPV) infection. Salicylic acid and cryotherapy are the most frequent treatments for common warts, but can be painful and cause scarring, and have high failure and recrudescence rates. Topical vitamin A has been shown to be a successful treatment of common warts in prior informal studies.</p> <p>Case</p> <p>The subject is a healthy, physically-active 30 old female with a 9 year history of common warts on the back of the right hand. The warts resisted treatment with salicylic acid, apple cider vinegar and an over-the-counter blend of essential oils marketed for the treatment of warts. Daily topical application of natural vitamin A derived from fish liver oil (25,000 IU) led to replacement of all the warts with normal skin. Most of the smaller warts had been replaced by 70 days. A large wart on the middle knuckle required 6 months of vitamin A treatment to resolve completely.</p> <p>Conclusion</p> <p>Retinoids should be further investigated in controlled studies to determine their effectiveness in treating common warts and the broad range of other benign and cancerous lesions induced by HPVs.</p

    Clara cell adhesion and migration to extracellular matrix

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clara cells are the epithelial progenitor cell of the small airways, a location known to be important in many lung disorders. Although migration of alveolar type II and bronchiolar ciliated epithelial cells has been examined, the migratory response of Clara cells has received little attention.</p> <p>Methods</p> <p>Using a modification of existing procedures for Clara cell isolation, we examined mouse Clara cells and a mouse Clara-like cell line (C22) for adhesion to and migration toward matrix substrate gradients, to establish the nature and integrin dependence of migration in Clara cells.</p> <p>Results</p> <p>We observed that Clara cells adhere preferentially to fibronectin (Fn) and type I collagen (Col I) similar to previous reports. Migration of Clara cells can be directed by a fixed gradient of matrix substrates (haptotaxis). Migration of the C22 cell line was similar to the Clara cells so integrin dependence of migration was evaluated with this cell line. As determined by competition with an RGD containing-peptide, migration of C22 cells toward Fn and laminin (Lm) 511 (formerly laminin 10) was significantly RGD integrin dependent, but migration toward Col I was RGD integrin independent, suggesting that Clara cells utilize different receptors for these different matrices.</p> <p>Conclusion</p> <p>Thus, Clara cells resemble alveolar type II and bronchiolar ciliated epithelial cells by showing integrin mediated pro-migratory changes to extracellular matrix components that are present in tissues after injury.</p

    Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens

    Get PDF
    Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r(2)⩾0.3) in both traditional and village chickens at pairwise marker distances of ∼10 Kb; while haplotype block analysis indicates a median block size of 11–12 Kb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55–38.89 Mb) and rose comb (Gga 7:18.41–22.09 Mb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25–67.28 Mb, Gga 1:67.28–67.32 Mb) totalling ∼75 Kb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions

    Fibrocytes and the tissue niche in lung repair

    Get PDF
    Human fibrocytes are bone marrow-derived mesenchymal progenitor cells that express a variety of markers related to leukocytes, hematopoietic stem cells and a diverse set of fibroblast phenotypes. Fibrocytes can be recruited from the circulation to the tissue where they further can differentiate and proliferate into various mesenchymal cell types depending on the tissue niche. This local tissue niche is important because it modulates the fibrocytes and coordinates their role in tissue behaviour and repair. However, plasticity of a niche may be co-opted in chronic airway diseases such as asthma, idiopathic pulmonary fibrosis and obliterative bronchiolitis. This review will therefore focus on a possible role of fibrocytes in pathological tissue repair processes in those diseases

    Carrion Availability in Space and Time

    Get PDF
    Introduction Availability of carrion to scavengers is a central issue in carrion ecology and management, and is crucial for understanding the evolution of scavenging behaviour. Compared to live animals, their carcasses are relatively unpredictable in space and time in natural conditions, with a few exceptions (see below, especially Sect. “Carrion Exchange at the Terrestrial-Aquatic Interface”). Carrion is also an ephemeral food resource due to the action of a plethora of consumers, from microorganisms to large vertebrates, as well as to desiccation (i.e., loss of water content; DeVault et al. 2003; Beasley et al. 2012; Barton et al. 2013; Moleón et al. 2014). With a focus on vertebrate carcasses, here we give an overview of (a) the causes that produce carrion, (b) the rate of carrion production, (c) the factors affecting carrion quality, and (d) the distribution of carrion in space and time, both in terrestrial and aquatic environments (including their interface). In this chapter, we will focus on naturally produced carrion, whereas non-natural causes of animal mortality are described in chapter “Human-Mediated Carrion: Effects on Ecological Processes”. However, throughout this chapter we also refer to extensive livestock carrion, because in the absence of strong restrictions such as those imposed in the European Community after the bovine spongiform encephalopathy crisis (Donázar et al. 2009; Margalida et al. 2010), the spatiotemporal availability of carrion of extensive livestock and wild ungulates is similar

    Dopamine Regulates Mobilization of Mesenchymal Stem Cells during Wound Angiogenesis

    Get PDF
    Angiogenesis is an important step in the complex biological and molecular events leading to successful healing of dermal wounds. Among the different cellular effectors of wound angiogenesis, the role of mesenchymal stem cells (MSCs) is of current interest due to their transdifferentiation and proangiogenic potentials. Skin is richly innervated by sympathetic nerves which secrete dopamine (DA) and we have recently shown that concentration of DA present in synaptic cleft can significantly inhibit wound tissue neovascularization. As recent reports indicate that MSCs by mobilizing into wound bed play an important role in promoting wound angiogenesis, we therefore investigated the effect of DA on the migration of MSCs in wound tissues. DA acted through its D2 receptors present in the MSCs to inhibit their mobilization to the wound beds by suppressing Akt phosphorylation and actin polymerization. In contrast, this inhibitory effect of DA was reversed after treatment with specific DA D2 receptor antagonist. Increased mobilization of MSCs was demonstrated in the wound site following blockade of DA D2 receptor mediated actions, and this in turn was associated with significantly more angiogenesis in wound tissues. This study is of translational value and indicates use of DA D2 receptor antagonists to stimulate mobilization of these stem cells for faster regeneration of damaged tissues
    corecore