212 research outputs found

    WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway

    Get PDF
    Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalization induced by ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies (MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalized EGFR co-segregates with exogenously expressed pre-melanosomal markers OA1 and fibrillar PMEL, following early endosomal sorting by the actin polymerization-promoting WASH complex. Stress-internalized EGFR is retained intracellularly by continued p38 activity in a mechanism involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal vesicles (ILVs) of MVBs. In contrast to the internalization-independent EGF-stimulated activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalization and intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis and might contribute to chemoresistance

    Multimodal Treatment in Metastatic Colorectal Cancer (mCRC) Improves Outcomes—The University College London Hospital (UCLH) Experience

    Get PDF
    Background: Despite notable advances in the management of metastatic colorectal cancer (mCRC) over the last two decades, treatment intent in the vast majority of patients remains palliative due to technically unresectable disease, extensive disease, or co-morbidities precluding major surgery. Up to 30% of individuals with mCRC are considered potentially suitable for primary or metastasis-directed multimodal therapy, including surgical resection, ablative techniques, or stereotactic radiotherapy (RT), with the aim of improving survival outcomes. We reviewed the potential benefits of multimodal therapy on the survival of patients with mCRC treated at the UCLH. Methods: Clinical data on baseline characteristics, multimodal treatments, and survival outcomes were retrospectively collected from all patients with mCRC receiving systemic chemotherapy between January 2013 and April 2017. Primary outcome was the impact of multimodal therapy on overall survival, compared to systemic therapy alone, and the effect of different types of multimodal therapy on survival outcome, and was assessed using the Kaplan–Meier approach. All analyses were adjusted for age, gender, and side of primary tumour. Results: One-hundred and twenty-five patients with mCRC were treated during the study period (median age: 62 years (range 19–89). The liver was the most frequent metastatic site (78%; 97/125). A total of 52% (65/125) had ≥2 lines of systemic chemotherapy. Of the 125 patients having systemic chemotherapy, 74 (59%) underwent multimodal treatment to the primary tumour or metastasis. Median overall survival (OS) was 25.7 months [95% Confidence Interval (CI) 21.5–29.0], and 3-year survival, 26%. Univariate analysis demonstrated that patients who had additional procedures (surgery/ablation/RT) were significantly less likely to die (Hazard Ratio (HR) 0.18, 95% CI 0.12–0.29, p < 0.0001) compared to those receiving systemic chemotherapy alone. Increasing number of multimodal procedures was associated with an incremental increase in survival—with median OS 28.4 m, 35.7 m, and 64.8 m, respectively, for 1, 2, or ≥3 procedures (log-rank p < 0.0001). After exclusion of those who received systemic chemotherapy only (n = 51), metastatic resections were associated with improved survival (adjusted HR 0.36, 95% CI 0.20–0.63, p < 0.0001), confirmed in multivariate analysis. Multiple single-organ procedures did not improve survival. Conclusion: Multimodal therapy for metastatic bowel cancer is associated with significant survival benefit. Resection/radical RT of the primary and resection of metastatic disease should be considered to improve survival outcomes following multidisciplinary team (MDT) discussion and individual assessment of fitness

    Measurement of the critical DNA lesions produced by antibody-directed enzyme prodrug therapy (ADEPT) in vitro, in vivo and in clinical material

    Get PDF
    An antibody-directed enzyme prodrug therapy (ADEPT) system against CEA-positive tumours is currently in phase I clinical trials. It consists of a prodrug, 4-[N,N-bis(2-iodoethyl) amino] phenoxycarbonyl L -glutamic acid (ZD2767P) and a conjugate of the F(ab')2 anti-CEA antibody A5B7 and the bacterial enzyme carboxypeptidase G2 (CPG2). ZD2767P is converted by antibody-targeted CPG2 into an active bifunctional alkylating drug (ZD2767) at the tumour site. The IC 50 value of the prodrug against the human colorectal tumour LS174T cell line was 55 ± 9 μM following a 1 h exposure. In contrast, co-incubation of ZD2767P with CPG2 resulted in 229-fold increase in activity. Using a modified comet assay, DNA interstrand cross links (ISC) were detected within 1 h of ZD2767P + CPG2 treatment and were repaired by 24 h. A clear dose–response was seen between the level of ISC, growth inhibition and ZD2767 concentration. Administration of a therapeutic dose of ZD2767P 72 h after the F(ab′)2 A5B7 conjugate to mice bearing LS147T xenografts resulted in extensive ISC in the tumour after 1 h; repair was seen at 24 h. Tumour biopsies and peripheral lymphocytes were studied in 5 patients on the ADEPT phase I clinical trial. In 4 patients no ISC were detected. These patients also demonstrated poor localization of conjugate and no tumour response was seen. However a significant level of ISC was detected in one tumour biopsy, which also showed evidence of conjugate localization and clinical response. These studies demonstrate the application of the comet assay in the measurement of ISC in vitro and in clinical material and confirm that activation of ZD2767P results in the formation of DNA crosslinks. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Stress-specific p38 MAP kinase activation is sufficient to drive EGF receptor endocytosis but not nuclear translocation

    Get PDF
    EGF receptor (EGFR) endocytosis is induced by stress in a manner dependent on the p38 MAPK family. Ligand and stresses such as X-rays, reportedly promote nuclear trafficking of endocytosed EGFR for regulation of gene transcription and DNA repair. We fail to detect EGFR endocytosis or nuclear transport following X-ray treatment of HeLa or head and neck cancer cells, despite extensive DNA damage induction. Apparent nuclear staining with EGFR extracellular domain antibody remained present despite reduced/absent EGFR expression, and so did not represent nuclear EGFR. UVB and UVC, but not X-ray or UVA, treatment induced p38 activation and EGFR endocytosis, although all of these stresses induced DNA damage, indicating that DNA damage alone is not sufficient to induce EGFR endocytosis. Increased reactive oxygen species (ROS) levels following UVB treatment, compared to that seen with X-rays, do not alone explain differences in p38 activation. UVB, like UVC, induced EGFR accumulation predominantly in perinuclear endosomes, rather than in the nucleus. Our morphological techniques identifying major changes in receptor distribution do not exclude the possibility that small but biologically relevant amounts of EGFR enter the nucleus. This study highlights the importance and limitations of morphological analyses of receptor distribution in understanding signaling outcome

    WASH and Tsg101/ALIX-dependent diversion of stress-internalised EGFR from the canonical endocytic pathway

    Get PDF
    Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalisation induced by ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies (MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalised EGFR co-segregates with exogenously-expressed pre-melanosomal markers OA1 and fibrillar PMEL, following early endosomal sorting by the actin polymerisation-promoting WASH complex. Stress-internalised EGFR is retained intracellularly by continued p38 activity in a mechanism involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal vesicles (ILVs) of MVBs. In contrast to the internalisation-independent EGF-stimulated activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalisation and intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis and might contribute to chemoresistance

    Drug delivery, biodistribution and anti-EGFR activity: theragnostic nanoparticles for simultaneous in vivo delivery of tyrosine kinase inhibitors and kinase activity biosensors

    Get PDF
    In vivo delivery of small molecule therapeutics to cancer cells, assessment of the selectivity of administration, and measuring the efficacity of the drug in question at the molecule level, are important ongoing challenges in developing new classes of cancer chemotherapeutics. One approach that has the potential to provide targeted delivery, tracking of biodistribution and readout of efficacy, is to use multimodal theragnostic nanoparticles to deliver the small molecule therapeutic. In this paper, we report the development of targeted theragnostic lipid/peptide/DNA lipopolyplexes. These simultaneously deliver an inhibitor of the EGFR tyrosine kinase, and plasmid DNA coding for a Crk-based biosensor, Picchu-X, which when expressed in the target cells can be used to quantify the inhibition of EGFR in vivo in a mouse colorectal cancer xenograft model. Reversible bioconjugation of a known analogue of the tyrosine kinase inhibitor Mo-IPQA to a cationic peptide, and co-formulation with peptides containing both EGFR-binding and cationic sequences, allowed for good levels of inhibitor encapsulation with targeted delivery to LIM1215 colon cancer cells. Furthermore, high levels of expression of the Picchu-X biosensor in the LIM1215 cells in vivo allowed us to demonstrate, using fluorescence lifetime microscopy (FLIM)-based biosensing, that EGFR activity can be successfully suppressed by the tyrosine kinase inhibitor, released from the lipopolyplexes. Finally, we measured the biodistribution of lipopolyplexes containing 125I-labelled inhibitors and were able to demonstrate that the lipopolyplexes gave significantly higher drug delivery to the tumors compared with free drug

    MEK inhibition leads to BRCA2 downregulation and sensitization to DNA damaging agents in pancreas and ovarian cancer models

    Get PDF
    Targeting the DNA damage response (DDR) in tumors with defective DNA repair is a clinically successful strategy. The RAS/RAF/MEK/ERK signalling pathway is frequently deregulated in human cancers. In this study, we explored the effects of MEK inhibition on the homologous recombination pathway and explored the potential for combination therapy of MEK inhibitors with DDR inhibitors and a hypoxia-activated prodrug. We studied effects of combining pimasertib, a selective allosteric inhibitor of MEK1/2, with olaparib, a small molecule inhibitor of poly (adenosine diphosphate [ADP]-ribose) polymerases (PARP), and with the hypoxia-activated prodrug evofosfamide in ovarian and pancreatic cancer cell lines. Apoptosis was assessed by Caspase 3/7 assay and protein expression was detected by immunoblotting. DNA damage response was monitored with γH2AX and RAD51 immunofluorescence staining. In vivo antitumor activity of pimasertib with evofosfamide were assessed in pancreatic cancer xenografts. We found that BRCA2 protein expression was downregulated following pimasertib treatment under hypoxic conditions. This translated into reduced homologous recombination repair demonstrated by levels of RAD51 foci. MEK inhibition was sufficient to induce formation of γH2AX foci, suggesting that inhibition of this pathway would impair DNA repair. When combined with olaparib or evofosfamide, pimasertib treatment enhanced DNA damage and increased apoptosis. The combination of pimasertib with evofosfamide demonstrated increased anti-tumor activity in BRCA wild-type Mia-PaCa-2 xenograft model, but not in the BRCA mutated BxPC3 model. Our data suggest that targeted MEK inhibition leads to impaired homologous recombination DNA damage repair and increased PARP inhibition sensitivity in BRCA- 2 proficient cancers

    Modulation of topoisomerase IIα expression and chemosensitivity through targeted inhibition of NF-Y:DNA binding by a diamino p-anisyl-benzimidazole (Hx) polyamide

    Get PDF
    BACKGROUND: Sequence specific polyamide HxIP 1, targeted to the inverted CCAAT Box 2 (ICB2) on the topoisomerase IIα (topo IIα) promoter can inhibit NF-Y binding, re-induce gene expression and increase sensitivity to etoposide. To enhance biological activity, diamino-containing derivatives (HxI*P 2 and HxIP* 3) were synthesised incorporating an alkyl amino group at the N1-heterocyclic position of the imidazole/pyrrole. METHODS: DNase I footprinting was used to evaluate DNA binding of the diamino Hx-polyamides, and their ability to disrupt the NF-Y:ICB2 interaction assessed using EMSAs. Topo IIα mRNA (RT-PCR) and protein (Immunoblotting) levels were measured following 18h polyamide treatment of confluent A549 cells. γH2AX was used as a marker for etoposide-induced DNA damage after pre-treatment with HxIP* 3 and cell viability was measured using Cell-Titer Glo®. RESULTS: Introduction of the N1-alkyl amino group reduced selectivity for the target sequence 5'-TACGAT-3' on the topo IIα promoter, but increased DNA binding affinity. Confocal microscopy revealed both fluorescent diamino polyamides localised in the nucleus, yet HxI*P 2 was unable to disrupt the NF-Y:ICB2 interaction and showed no effect against the downregulation of topo IIα. In contrast, inhibition of NF-Y binding by HxIP* 3 stimulated dose-dependent (0.1-2μM) re-induction of topo IIα and potentiated cytotoxicity of topo II poisons by enhancing DNA damage. CONCLUSIONS: Polyamide functionalisation at the N1-position offers a design strategy to improve drug-like properties. Dicationic HxIP* 3 increased topo IIα expression and chemosensitivity to topo II-targeting agents. GENERAL SIGNIFICANCE: Pharmacological modulation of topo IIα expression has the potential to enhance cellular sensitivity to clinically-used anticancer therapeutics. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani

    COVID-19 in cancer patients on systemic anti-cancer therapies: outcomes from the CAPITOL (COVID-19 Cancer PatIenT Outcomes in North London) cohort study

    Get PDF
    Background: Patients with cancer are hypothesised to be at increased risk of contracting COVID-19, leading to changes in treatment pathways in those treated with systemic anti-cancer treatments (SACT). This study investigated the outcomes of patients receiving SACT to assess whether they were at greater risk of contracting COVID-19 or having more severe outcomes. / Methods: Data was collected from all patients receiving SACT in two cancer centres as part of CAPITOL (COVID-19 Cancer PatIenT Outcomes in North London). The primary outcome was the effect of clinical characteristics on the incidence and severity of COVID-19 infection in patients on SACT. We used univariable and multivariable models to analyse outcomes, adjusting for age, gender and comorbidities. / Results: A total of 2871 patients receiving SACT from 2 March to 31 May 2020 were analysed; 68 (2.4%) were diagnosed with COVID-19. Cancer patients receiving SACT were more likely to die if they contracted COVID-19 than those who did not [adjusted (adj.) odds ratio (OR) 9.84; 95% confidence interval (CI) 5.73–16.9]. Receiving chemotherapy increased the risk of developing COVID-19 (adj. OR 2.99; 95% CI = 1.72–5.21), with high dose chemotherapy significantly increasing risk (adj. OR 2.36, 95% CI 1.35–6.48), as did the presence of comorbidities (adj. OR 2.29; 95% CI 1.19–4.38), and having a respiratory or intrathoracic neoplasm (adj. OR 2.12; 95% CI 1.04–4.36). Receiving targeted treatment had a protective effect (adj. OR 0.53; 95% CI 0.30–0.95). Treatment intent (curative versus palliative), hormonal- or immunotherapy and solid versus haematological cancers had no significant effect on risk. / Conclusion: Patients on SACT are more likely to die if they contract COVID-19. Those on chemotherapy, particularly high dose chemotherapy, are more likely to contract COVID-19, while targeted treatment appears to be protective
    • …
    corecore