46 research outputs found

    Inhibition of Tau aggregation with BSc3094 reduces Tau and decreases cognitive deficits in rTg4510 mice.

    Get PDF
    Background One of the major hallmarks of Alzheimer's disease (AD)is the aberrant modification and aggregation of the microtubule-associated protein Tau . The extent of Tau pathology correlates with cognitive decline, strongly implicating Tau in the pathogenesis of the disease. Because the inhibition of Tau aggregation may be a promising therapeutic target, we tested the efficacy of BSc3094, an inhibitor of Tau aggregation, in reducing Tau pathology and ameliorating the disease symptoms in transgenic mice. Methods Mice expressing human Tau with the P301L mutation (line rTg4510) were infused with BSc3094 into the lateral ventricle using Alzet osmotic pumps connected to a cannula that was placed on the skull of the mice, thus bypassing the blood-brain barrier (BBB) . The drug treatment lasted for 2 months, and the effect of BSc3094 on cognition and on reversing hallmarks of Tau pathology was assessed. Results BSc3094 significantly reduced the levels of Tau phosphorylation and sarkosyl-insoluble Tau. In addition, the drug improved cognition in different behavioral tasks and reduced anxiety-like behavior in the transgenic mice used in the study. Conclusions Our in vivo investigations demonstrated that BSc3094 is capable of partially reducing the pathological hallmarks typically observed in Tau transgenic mice, highlighting BSc3094 as a promising compound for a future therapeutic approach for AD

    Analysis of in vivo turnover of tau in a mouse model of tauopathy

    Get PDF
    BACKGROUND: Intracellular accumulation of tau as neurofibrillary tangles (NFTs) is the hallmark of Alzheimer’s disease (AD) as well as in other tauopathies. Tau is present not only in the cytoplasm but also in the extracellular space such as cerebrospinal fluid (CSF) and brain interstitial fluid (ISF). Although clearance is one critical parameter leading to such intracellular/extracellular tau accumulation, in vivo turnover of tau has not been well characterized. The current study has attempted to precisely determine in vivo turnover rates of tau utilizing tet-off regulatable mice. In particular, we assessed intracellular tau and extracellular tau, soluble tau, insoluble tau and phosphorylated tau at certain sites utilizing a combination of in vivo microdialysis, biochemical analysis and specific ELISAs recognizing each species. To examine the effect of a tauopathy-associated mutation on tau clearance, half-lives of various tau species were compared between the mice with a FTDP-17 mutation that induces Ξ²-sheet formation, Ξ”K280 mutation (pro-aggregant mice) and control mice with additional Ξ²-sheet breaking mutations (anti-aggregant mice). RESULTS: Here we report that tau is metabolized at much slower turnover rates in vivo than in cell culture. We found that insoluble tau in pro-aggregant mice had a significantly slower half-life (t(1/2) = ~34.2Β days) than soluble tau (t(1/2) = ~9.7Β days). In contrast, soluble tau phosphorylated in the proline rich region was cleared faster than total soluble tau. When comparing pro-aggregant mice to anti-agregant mice, turnover rates of soluble tau species were not significantly different. CONCLUSIONS: The current study provides a comprehensive description of in vivo turnover of various tau species present in mice that express human tau. The turnover rate of soluble tau was not significantly altered between pro-aggregant mice and anti-aggregant mice. This suggests that altered conformation by Ξ”K280 does not have a major impact on clearance pathways for soluble tau. In contrast, different tau species displayed different half-lives. Turnover was significantly delayed for insoluble tau whereas it was accelerated for soluble tau phosphorylated in the proline rich region. These differences in susceptibilities to clearance suggest that aggregation and phosphorylation influences tau clearance which may be important in tau pathogenesis

    The Pleiotropic CymR Regulator of Staphylococcus aureus Plays an Important Role in Virulence and Stress Response

    Get PDF
    We have characterized a novel pleiotropic role for CymR, the master regulator of cysteine metabolism. We show here that CymR plays an important role both in stress response and virulence of Staphylococcus aureus. Genes involved in detoxification processes, including oxidative stress response and metal ion homeostasis, were differentially expressed in a Ξ”cymR mutant. Deletion of cymR resulted in increased sensitivity to hydrogen peroxide-, disulfide-, tellurite- and copper-induced stresses. Estimation of metabolite pools suggests that this heightened sensitivity could be the result of profound metabolic changes in the Ξ”cymR mutant, with an increase in the intracellular cysteine pool and hydrogen sulfide formation. Since resistance to oxidative stress within the host organism is important for pathogen survival, we investigated the role of CymR during the infectious process. Our results indicate that the deletion of cymR promotes survival of S. aureus inside macrophages, whereas virulence of the Ξ”cymR mutant is highly impaired in mice. These data indicate that CymR plays a major role in virulence and adaptation of S. aureus for survival within the host

    Phenotype Enhancement Screen of a Regulatory spx Mutant Unveils a Role for the ytpQ Gene in the Control of Iron Homeostasis

    Get PDF
    Spx is a global regulator of genes that are induced by disulfide stress in Bacillus subtilis. The regulon that it governs is comprised of over 120 genes based on microarray analysis, although it is not known how many of these are under direct Spx control. Most of the Spx-regulated genes (SRGs) are of unknown function, but many encode products that are conserved in low %GC Gram-positive bacteria. Using a gene-disruption library of B. subtilis genomic mutations, the SRGs were screened for phenotypes related to Spx-controlled activities, such as poor growth in minimal medium and sensitivity to methyglyoxal, but nearly all of the SRG mutations showed little if any phenotype. To uncover SRG function, the mutations were rescreened in an spx mutant background to determine which mutant SRG allele would enhance the spx mutant phenotype. One of the SRGs, ytpQ was the site of a mutation that, when combined with an spx null mutation, elevated the severity of the Spx mutant phenotype, as shown by reduced growth in a minimal medium and by hypersensitivity to methyglyoxal. The ytpQ mutant showed elevated oxidative protein damage when exposed to methylglyoxal, and reduced growth rate in liquid culture. Proteomic and transcriptomic data indicated that the ytpQ mutation caused the derepression of the Fur and PerR regulons of B. subtilis. Our study suggests that the ytpQ gene, encoding a conserved DUF1444 protein, functions directly or indirectly in iron homeostasis. The ytpQ mutant phenotype mimics that of a fur mutation, suggesting a condition of low cellular iron. In vitro transcription analysis indicated that Spx stimulates transcription from the ytpPQR operon within which the ytpQ gene resides. The work uncovers a link between Spx and control of iron homeostasis
    corecore