109 research outputs found
W+W-, WZ and ZZ production in the POWHEG BOX
We present an implementation of the vector boson pair production processes
ZZ, W+W- and W Z within the POWHEG framework, which is a method that allows the
interfacing of NLO calculations to shower Monte Carlo programs. The
implementation is built within the POWHEG BOX package. The Z/\gamma^*
interference, as well as singly resonant contributions, are properly included.
We also considered interference terms arising from identical leptons in the
final state. As a result, all contributions leading to the desired four-lepton
system have been included in the calculation, with the sole exception of the
interference between ZZ and W+W- in the production of a pair of same-flavour,
oppositely charged fermions and a pair of neutrinos, which we show to be fully
negligible. Anomalous trilinear couplings can be also set in the program, and
we give some examples of their effect at the LHC. We have made the relevant
code available at the POWHEG BOX web site.Comment: 20 pages, 9 figures, 2 tables. Minor corrections and updated
references in revised versio
Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO
We present results for the QCD next-to-leading order (NLO) calculation of
single-top t-channel production in the 4-flavour scheme, interfaced to Parton
Shower (PS) Monte Carlo programs according to the POWHEG and MC@NLO methods.
Comparisons between the two methods, as well as with the corresponding process
in the 5-flavour scheme are presented. For the first time results for typical
kinematic distributions of the spectator-b jet are presented in an NLO+PS
approach.Comment: 16+1 pages, 8 figures, matches version accepted for publication in
JHE
MadGraph/MadEvent v4: The New Web Generation
We present the latest developments of the MadGraph/MadEvent Monte Carlo event
generator and several applications to hadron collider physics. In the current
version events at the parton, hadron and detector level can be generated
directly from a web interface, for arbitrary processes in the Standard Model
and in several physics scenarios beyond it (HEFT, MSSM, 2HDM). The most
important additions are: a new framework for implementing user-defined new
physics models; a standalone running mode for creating and testing matrix
elements; generation of events corresponding to different processes, such as
signal(s) and backgrounds, in the same run; two platforms for data analysis,
where events are accessible at the parton, hadron and detector level; and the
generation of inclusive multi-jet samples by combining parton-level events with
parton showers. To illustrate the new capabilities of the package some
applications to hadron collider physics are presented:
1) Higgs search in pp \to H \to W^+W^-: signal and backgrounds.
2) Higgs CP properties: pp \to H jj$in the HEFT.
3) Spin of a new resonance from lepton angular distributions.
4) Single-top and Higgs associated production in a generic 2HDM.
5) Comparison of strong SUSY pair production at the SPS points.
6) Inclusive W+jets matched samples: comparison with the Tevatron data.Comment: 38 pages, 15 figure
Scaling Patterns for QCD Jets
Jet emission at hadron colliders follows simple scaling patterns. Based on
perturbative QCD we derive Poisson and staircase scaling for final state as
well as initial state radiation. Parton density effects enhance staircase
scaling at low multiplicities. We propose experimental tests of our theoretical
findings in Z+jets and QCD gap jets production based on minor additions to
current LHC analyses.Comment: 36 pages, 16 figure
Top Quark Physics at the LHC: A Review of the First Two Years
This review summarizes the highlights in the area of top quark physics
obtained with the two general purpose detectors ATLAS and CMS during the first
two years of operation of the Large Hadron Collider LHC. It covers the 2010 and
2011 data taking periods, where the LHC provided pp collisions at a
center-of-mass energy of sqrt(s)=7 TeV. Measurements are presented of the total
and differential top quark pair production cross section in many different
channels, the top quark mass and various other properties of the top quark and
its interactions, for instance the charge asymmetry. Measurements of single top
quark production and various searches for new physics involving top quarks are
also discussed. The already very precise experimental data are in good
agreement with the standard model.Comment: 107 pages, invited review for Int. J. Mod. Phys. A, v2 is identical
to v1 except for the addition of the table of content
Axonal inclusions in spinocerebellar ataxia type 3
Protein aggregation is a major pathological hallmark of many neurodegenerative disorders including polyglutamine diseases. Aggregation of the mutated form of the disease protein ataxin-3 into neuronal nuclear inclusions is well described in the polyglutamine disorder spinocerebellar ataxia type 3 (SCA3 or Machado–Joseph disease), although these inclusions are not thought to be directly pathogenic. Neuropil aggregates have not yet been described in SCA3. We performed a systematic immunohistochemical study of serial thick sections through brains of seven clinically diagnosed and genetically confirmed SCA3 patients. Using antibodies against ataxin-3, p62, ubiquitin, the polyglutamine marker 1C2 as well as TDP-43, we analyzed neuronal localization, composition and distribution of aggregates within SCA3 brains. The analysis revealed widespread axonal aggregates in fiber tracts known to undergo neurodegeneration in SCA3. Similar to neuronal nuclear inclusions, the axonal aggregates were ubiquitinated and immunopositive for the proteasome and autophagy associated shuttle protein p62, indicating involvement of neuronal protein quality control mechanisms. Rare TDP-43 positive axonal inclusions were also observed. Based on the correlation between affected fiber tracts and degenerating neuronal nuclei, we hypothesize that these novel axonal inclusions may be detrimental to axonal transport mechanisms and thereby contribute to degeneration of nerve cells in SCA3
Distortion in a 7xxx aluminum alloy during liquid phase sintering
The distortion in a sintered 7xxx aluminum alloy, Al-7Zn-2.5Mg-1Cu (wt. pct), has been investigated by sintering three rectangular bars in each batch at 893 K (620 °C) for 0 to 40 minutes in nitrogen, followed by air or furnace cooling. They were placed parallel to each other, equally spaced apart at 2 mm, with their long axes being perpendicular to the incoming nitrogen flow. Pore evolution in each sample during isothermal sintering was examined metallographically. The compositional changes across sample mid-cross section and surface layers were analyzed using energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy depth profiling, respectively. The two outer samples bent toward the middle one, while the middle sample was essentially distortion free after sintering. The distortion in the outer samples was a result of differential shrinkage between their outer and inner surfaces during isothermal sintering. The porous outer surface showed an enrichment of oxygen around the large pores as well as lower magnesium and zinc contents than the interior and inner surface of the same sample, while the inner surface was distinguished by the presence of AlN. The differential shrinkage was caused by different oxygen contents in local sintering atmosphere and unbalanced loss of magnesium and zinc between the outer and inner surfaces
Report of the Snowmass 2013 energy frontier QCD working group
This is the summary report of the energy frontier QCD working group prepared
for Snowmass 2013. We review the status of tools, both theoretical and
experimental, for understanding the strong interactions at colliders. We
attempt to prioritize important directions that future developments should
take. Most of the efforts of the QCD working group concentrate on proton-proton
colliders, at 14 TeV as planned for the next run of the LHC, and for 33 and 100
TeV, possible energies of the colliders that will be necessary to carry on the
physics program started at 14 TeV. We also examine QCD predictions and
measurements at lepton-lepton and lepton-hadron colliders, and in particular
their ability to improve our knowledge of strong coupling constant and parton
distribution functions.Comment: 62 pages, 31 figures, Snowmass community summer study 201
NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging
We present next-to-leading order (NLO) predictions including QCD and electroweak (EW) corrections for the production and decay of off-shell electroweak vector bosons in association with up to two jets at the 13 TeV LHC. All possible dilepton final states with zero, one or two charged leptons that can arise from off-shell W and Z bosons or photons are considered. All predictions are obtained using the automated implementation of NLO QCD+EW corrections in the OpenLoops matrix-element generator combined with the Munich and Sherpa Monte Carlo frameworks. Electroweak corrections play an especially important role in the context of BSM searches, due to the presence of large EW Sudakov logarithms at the TeV scale. In this kinematic regime, important observables such as the jet transverse momentum or the total transverse energy are strongly sensitive to multijet emissions. As a result, fixed-order NLO QCD+EW predictions are plagued by huge QCD corrections and poor theoretical precision. To remedy this problem we present an approximate method that allows for a simple and reliable implementation of NLO EW corrections in the MePs@Nlo multijet merging framework. Using this general approach we present an inclusive simulation of vector-boson production in association with jets that guarantees NLO QCD+EW accuracy in all phase-space regions involving up to two resolved jets
Summary of Lepton Photon 2011
In this lecture, I summarize developments presented at the Lepton Photon 2011
conference and give my perspective on the current situation in high-energy
physics.Comment: 56 pages, 37 figures; v2: minor corrections to reference
- …