7,279 research outputs found

    Sommerfeld's image method in the calculation of van der Waals forces

    Full text link
    We show how the image method can be used together with a recent method developed by C. Eberlein and R. Zietal to obtain the dispersive van der Waals interaction between an atom and a perfectly conducting surface of arbitrary shape. We discuss in detail the case of an atom and a semi- infinite conducting plane. In order to employ the above procedure to this problem it is necessary to use the ingenious image method introduced by Sommerfeld more than one century ago, which is a generalization of the standard procedure. Finally, we briefly discuss other interesting situations that can also be treated by the joint use of Sommerfeld's image technique and Eberlein-Zietal method.Comment: To appear in the proceedings of Conference on Quantum Field Theory under the Influence of External Conditions (QFEXT11

    Computational science and re-discovery: open-source implementations of ellipsoidal harmonics for problems in potential theory

    Full text link
    We present two open-source (BSD) implementations of ellipsoidal harmonic expansions for solving problems of potential theory using separation of variables. Ellipsoidal harmonics are used surprisingly infrequently, considering their substantial value for problems ranging in scale from molecules to the entire solar system. In this article, we suggest two possible reasons for the paucity relative to spherical harmonics. The first is essentially historical---ellipsoidal harmonics developed during the late 19th century and early 20th, when it was found that only the lowest-order harmonics are expressible in closed form. Each higher-order term requires the solution of an eigenvalue problem, and tedious manual computation seems to have discouraged applications and theoretical studies. The second explanation is practical: even with modern computers and accurate eigenvalue algorithms, expansions in ellipsoidal harmonics are significantly more challenging to compute than those in Cartesian or spherical coordinates. The present implementations reduce the "barrier to entry" by providing an easy and free way for the community to begin using ellipsoidal harmonics in actual research. We demonstrate our implementation using the specific and physiologically crucial problem of how charged proteins interact with their environment, and ask: what other analytical tools await re-discovery in an era of inexpensive computation?Comment: 25 pages, 3 figure

    Limits on Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    Get PDF
    We have used the Berkeley-Illinois-Maryland-Association (BIMA) millimeter array outfitted with sensitive cm-wave receivers to search for Cosmic Microwave Background (CMB) anisotropies on arcminute scales. The interferometer was placed in a compact configuration which produces high brightness sensitivity, while providing discrimination against point sources. Operating at a frequency of 28.5 GHz, the FWHM primary beam of the instrument is 6.6 arcminutes. We have made sensitive images of seven fields, five of which where chosen specifically to have low IR dust contrast and be free of bright radio sources. Additional observations with the Owens Valley Radio Observatory (OVRO) millimeter array were used to assist in the location and removal of radio point sources. Applying a Bayesian analysis to the raw visibility data, we place limits on CMB anisotropy flat-band power Q_flat = 5.6 (+3.0 -5.6) uK and Q_flat < 14.1 uK at 68% and 95% confidence. The sensitivity of this experiment to flat band power peaks at a multipole of l = 5470, which corresponds to an angular scale of approximately 2 arcminutes. The most likely value of Q_flat is similar to the level of the expected secondary anisotropies.Comment: 15 pages, 5 figures, LaTex, aas2pp4.sty, ApJ submitte

    Alternative Fourier Expansions for Inverse Square Law Forces

    Get PDF
    Few-body problems involving Coulomb or gravitational interactions between pairs of particles, whether in classical or quantum physics, are generally handled through a standard multipole expansion of the two-body potentials. We discuss an alternative based on a compact, cylindrical Green's function expansion that should have wide applicability throughout physics. Two-electron "direct" and "exchange" integrals in many-electron quantum systems are evaluated to illustrate the procedure which is more compact than the standard one using Wigner coefficients and Slater integrals.Comment: 10 pages, latex/Revtex4, 1 figure

    Two-Center Integrals for r_{ij}^{n} Polynomial Correlated Wave Functions

    Full text link
    All integrals needed to evaluate the correlated wave functions with polynomial terms of inter-electronic distance are included. For this form of the wave function, the integrals needed can be expressed as a product of integrals involving at most four electrons

    Detection of Cosmic Microwave Background Structure in a Second Field with the Cosmic Anisotropy Telescope

    Get PDF
    We describe observations at frequencies near 15 GHz of the second 2x2 degree field imaged with the Cambridge Cosmic Anisotropy Telescope (CAT). After the removal of discrete radio sources, structure is detected in the images on characteristic scales of about half a degree, corresponding to spherical harmonic multipoles in the approximate range l= 330--680. A Bayesian analysis confirms that the signal arises predominantly from the cosmic microwave background (CMB) radiation for multipoles in the lower half of this range; the average broad-band power in a bin with centroid l=422 (theta = 51') is estimated to be Delta_T/T=2.1^{+0.4}_{-0.5} x 10^{-5}. For multipoles centred on l=615 (theta =35'), we find contamination from Galactic emission is significant, and constrain the CMB contribution to the measured power in this bin to be Delta_T/T <2.0 x 10^{-5} (1-sigma upper limit). These new results are consistent with the first detection made by CAT in a completely different area of sky. Together with data from other experiments, this new CAT detection adds weight to earlier evidence from CAT for a downturn in the CMB power spectrum on scales smaller than 1 degree. Improved limits on the values of H_0 and Omega are determined using the new CAT data.Comment: 5 pages, 5 figures (gif), submitted to MNRA
    corecore