9,800 research outputs found
An Optimal Skorokhod Embedding for Diffusions
Given a Brownian motion and a general target law (not necessarily
centered or even integrable) we show how to construct an embedding of in
. This embedding is an extension of an embedding due to Perkins, and is
optimal in the sense that it simultaneously minimises the distribution of the
maximum and maximises the distribution of the minimum among all embeddings of
. The embedding is then applied to regular diffusions, and used to
characterise the target laws for which a -embedding may be found.Comment: 22 pages, 4 figure
Root to Kellerer
We revisit Kellerer's Theorem, that is, we show that for a family of real
probability distributions which increases in convex
order there exists a Markov martingale s.t.\ .
To establish the result, we observe that the set of martingale measures with
given marginals carries a natural compact Polish topology. Based on a
particular property of the martingale coupling associated to Root's embedding
this allows for a relatively concise proof of Kellerer's theorem.
We emphasize that many of our arguments are borrowed from Kellerer
\cite{Ke72}, Lowther \cite{Lo07}, and Hirsch-Roynette-Profeta-Yor
\cite{HiPr11,HiRo12}.Comment: 8 pages, 1 figur
Ephemeral properties and the illusion of microscopic particles
Founding our analysis on the Geneva-Brussels approach to quantum mechanics,
we use conventional macroscopic objects as guiding examples to clarify the
content of two important results of the beginning of twentieth century:
Einstein-Podolsky-Rosen's reality criterion and Heisenberg's uncertainty
principle. We then use them in combination to show that our widespread belief
in the existence of microscopic particles is only the result of a cognitive
illusion, as microscopic particles are not particles, but are instead the
ephemeral spatial and local manifestations of non-spatial and non-local
entities
Systems of practice and the circular economy: transforming mobile phone product service systems
Of late, policy and research attention has increasingly focused on making the Circular Economy a reality. A key part of this agenda is the creation of Sustainable Product Service Systems (SPSS) that meet consumers’ needs whilst lessening negative environmental impacts. Although the SPSS literature has grown recently, key aspects require further examination. In response, this paper discusses empirical research exploring consumers’ reactions to a novel, hypothetical mobile phone SPSS, utilizing qualitative methods that included ‘business origami’. It examines consumers’ knowledge about current mobile phone life cycles, and responses to the proposed SPSS, drawing on a ‘systems of practice’ framework to discuss the potential for significant changes in phone purchase and use. It outlines barriers to alterations in practices, underscoring the centrality that connectivity and data storage now have in many peoples’ daily lives, which have for some become clustered around the capabilities and accessibility of the mobile phone
Bayesian model comparison applied to the Explorer-Nautilus 2001 coincidence data
Bayesian reasoning is applied to the data by the ROG Collaboration, in which
gravitational wave (g.w.) signals are searched for in a coincidence experiment
between Explorer and Nautilus. The use of Bayesian reasoning allows, under well
defined hypotheses, even tiny pieces of evidence in favor of each model to be
extracted from the data. The combination of the data of several experiments can
therefore be performed in an optimal and efficient way. Some models for
Galactic sources are considered and, within each model, the experimental result
is summarized with the likelihood rescaled to the insensitivity limit value
(`` function''). The model comparison result is given in in terms of
Bayes factors, which quantify how the ratio of beliefs about two alternative
models are modified by the experimental observationComment: 16 pages, 4 figures. Presented at the GWDAW2002 conference, held in
Kyoto on Dec.,2002. This version includes comments by the referees of CQG,
which has accepted the paper for pubblication in the special issue of the
conference. In particular, note that in Eq. 12 there was a typeset error. As
suggested by one of the referees, a uniform prior in Log(alpha) has also been
considere
Limits on Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array
We have used the Berkeley-Illinois-Maryland-Association (BIMA) millimeter
array outfitted with sensitive cm-wave receivers to search for Cosmic Microwave
Background (CMB) anisotropies on arcminute scales. The interferometer was
placed in a compact configuration which produces high brightness sensitivity,
while providing discrimination against point sources. Operating at a frequency
of 28.5 GHz, the FWHM primary beam of the instrument is 6.6 arcminutes. We have
made sensitive images of seven fields, five of which where chosen specifically
to have low IR dust contrast and be free of bright radio sources. Additional
observations with the Owens Valley Radio Observatory (OVRO) millimeter array
were used to assist in the location and removal of radio point sources.
Applying a Bayesian analysis to the raw visibility data, we place limits on CMB
anisotropy flat-band power Q_flat = 5.6 (+3.0 -5.6) uK and Q_flat < 14.1 uK at
68% and 95% confidence. The sensitivity of this experiment to flat band power
peaks at a multipole of l = 5470, which corresponds to an angular scale of
approximately 2 arcminutes. The most likely value of Q_flat is similar to the
level of the expected secondary anisotropies.Comment: 15 pages, 5 figures, LaTex, aas2pp4.sty, ApJ submitte
Weyssenhoff fluid dynamics in general relativity using a 1+3 covariant approach
The Weyssenhoff fluid is a perfect fluid with spin where the spin of the
matter fields is the source of torsion in an Einstein-Cartan framework. Obukhov
and Korotky showed that this fluid can be described as an effective fluid with
spin in general relativity. A dynamical analysis of such a fluid is performed
in a gauge invariant manner using the 1+3 covariant approach. This yields the
propagation and constraint equations for the set of dynamical variables. A
verification of these equations is performed for the special case of
irrotational flow with zero peculiar acceleration by evolving the constraints.Comment: 20 page
The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications
We provide calculations and theoretical arguments supporting the emission of
electromagnetic radiation from charged particles accelerated by gravitational
waves (GWs). These waves have significant indirect evidence to support their
existence, yet they interact weakly with ordinary matter. We show that the
induced oscillations of charged particles interacting with a GW, which lead to
the emission of electromagnetic radiation, will also result in wave
attenuation. These ideas are supported by a small body of literature, as well
as additional arguments for particle acceleration based on GW memory effects.
We derive order of magnitude power calculations for various initial charge
distributions accelerated by GWs. The resulting power emission is extremely
small for all but very strong GWs interacting with large quantities of charge.
If the results here are confirmed and supplemented, significant consequences
such as attenuation of early universe GWs could result. Additionally, this
effect could extend GW detection techniques into the electromagnetic regime.
These explorations are worthy of study to determine the presence of such
radiation, as it is extremely important to refine our theoretical framework in
an era of active GW astrophysics.Comment: Appears in Gravitational Wave Astrophysics, Editor C.F. Sopuerta,
Astrophysics and Space Science Proceedings, Volume 40. ISBN
978-3-319-10487-4. Springer International Publishing Switzerland, 2015, p.
30
Strong exciton–photon coupling in a low-Q all-metal mirror microcavity
Copyright © 2002 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 81 (2002) and may be found at http://link.aip.org/link/?APPLAB/81/3519/1We report the experimental observation of strong exciton–photon coupling in a planar microcavity composed of an organic semiconductor positioned between two metallic (silver) mirrors. Via transmission and reflectivity measurements, we observe a very large, room temperature Rabi splitting in excess of 300 meV. We show that the Rabi-splitting is enhanced in all-metal microcavities by a factor of more than 2 compared to an organic film positioned between a silver mirror and a dielectric mirror. This enhancement results from the significantly larger optical fields that are confined within all-metal microcavities
- …
