3 research outputs found

    Reconstruction of eroded and deposited sediment volumes of the embanked River Waal, the Netherlands, for the period AD 1631-present

    No full text
    In the last few centuries humans have modified rivers, and rivers have responded with noticeable changes in sedimentary dynamics. The objective of this study is to assess these responses of the sedimentary dynamics. Therefore, we calculated a sediment budget for eroded and deposited sediment volumes in a ~12-km long floodplain section of the largest semi-natural embanked but still dynamic lower Rhine distributary, for ~50-years time slices between ad 1631 and present. This is the period during which embanked floodplains were formed by downstream migration of meander bends between confining dykes. Our sediment budget involves a detailed reconstruction of vertical and lateral accretion rates and erosion rates of floodplain sediment. To do so, we developed a series of historical geomorphological maps, and lithogenetic cross-sections. Based on the maps and cross-sections, we divided the floodplain into building blocks representing channel bed and overbank sediment bodies. Chronostratigraphy within the blocks was estimated by interpretation of heavy metal profiles and from optically stimulated luminescence (OSL) dating results. Sediment budgets were hence calculated as a change of volume of each building block between time steps. The amount of lateral accretion initially increased, as a result of island and sand bar formation following embankment. From the eighteenth century onwards, there was a decrease of lateral processes in time, which is a result of straightening of the river by human activities, and a reduction of water and sediment supply due to the construction of a new upstream bifurcation. With straightening of the river, the floodplain area grew. Artificial fixation of the channel banks after ad 1872 prevented lateral activity. From then on, overbank deposition became the main process, leading to a continuous increase of floodplain elevation, and inherent decrease of flooding frequency and sediment accumulation rate

    Re-evaluating luminescence burial doses and bleaching of fluvial deposits using Bayesian computational statistics

    Get PDF
    The optically stimulated luminescence (OSL) signal from fluvial sediment often contains a remnant from the previous deposition cycle, leading to a partially bleached equivalent-dose distribution. Although identification of the burial dose is of primary concern, the degree of bleaching could potentially provide insights into sediment transport processes. However, comparison of bleaching between samples is complicated by sample-to-sample variation in aliquot size and luminescence sensitivity. Here we begin development of an age model to account for these effects. With measurement data from multi-grain aliquots, we use Bayesian computational statistics to estimate the burial dose and bleaching parameters of the single-grain dose distribution. We apply the model to 46 samples taken from fluvial sediment of Rhine branches in the Netherlands, and compare the results with environmental predictor variables (depositional environment, texture, sample depth, depth relative to mean water level, dose rate). Although obvious correlations with predictor variables are absent, there is some suggestion that the best-bleached samples are found close to the modern mean water level, and that the extent of bleaching has changed over the recent past. We hypothesise that sediment deposited near the transition of channel to overbank deposits receives the most sunlight exposure, due to local reworking after deposition. However, nearly all samples are inferred to have at least some well-bleached grains, suggesting that bleaching also occurs during fluvial transport
    corecore