93 research outputs found

    A new stability results for the backward heat equation

    Full text link
    In this paper, we regularize the nonlinear inverse time heat problem in the unbounded region by Fourier method. Some new convergence rates are obtained. Meanwhile, some quite sharp error estimates between the approximate solution and exact solution are provided. Especially, the optimal convergence of the approximate solution at t = 0 is also proved. This work extends to many earlier results in (f2,f3, hao1,Quan,tau1, tau2, Trong3,x1).Comment: 13 page

    Optical properties of As2S3-based suspended-core photonic crystal fiber

    Get PDF
    In this paper, the nonlinear properties of photonic crystal fibers (PCF) with As2S3 substrate were analyzed numerically. With the suspended-core design, we achieve an anomalous dispersion regime with one or two zero-dispersion wavelengths, which is flat and has a small value at the investigated wavelength. The high nonlinear coefficient and very low confinement loss in the wavelength range of 1–3 µm, in comparison with other publications, are the outstanding advantages of these suspended-core PCFs. The highest nonlinear coefficient (28,527.374 W–1·km–1), smallest effective mode area (0.593 µm2), and low confinement loss (6.050 × 10–17 dB·m–1) at the wavelength of 1.55 µm were observed in the PCFs with a fiber diameter of 16.07 μm. Based on the numerical simulation results, we proposed two optimal structures suitable for supercontinuum generation

    A Regularization of the Backward Problem for Nonlinear Parabolic Equation with Time-Dependent Coefficient

    Get PDF
    We study the backward problem with time-dependent coefficient which is a severely ill-posed problem. We regularize this problem by combining quasi-boundary value method and quasi-reversibility method and then obtain sharp error estimate between the exact solution and the regularized solution. A numerical experiment is given in order to illustrate our results

    Removal of Power Line Interference from Electrocardiograph (ECG) using Proposed Adaptive Filter Algorithm

    Get PDF
    ECG signals in measurements are contaminated by noises including power line interference. In recent years, adaptive filters with different approaches have been investigated to remove power line interference in ECG.In this paper, an adaptive filter is proposed to cancel power line interference in ECG signals. The proposed algorithm is experimented with MIT-BIH ECG signals data base. The algorithm2019;s results are compared with the results of other adaptive filter algorithms using Least Mean Square (LMS), Normalized Least Mean Square (NLMS) by Signal to Noise (SNR). Theses works are performed by LabVIEW software

    An Efficient Transmission Power Design for SWIPT Multi-antenna Network Integrated by an Intelligent Reflecting Surface

    Get PDF
    In this work, intelligent reflecting surface (IRS) is integrated to improve the transmission power in the simultaneous wireless information and power transfer (SWIPT) system with hybrid time-switching (TS) users. The considered scenario includes one base station (BS), one IRS, and multiple TS users, where the BS transmits the information and energy signals to the receivers with IRS assistance. The sum transmission power minimization problem is formulated under the quality-of-service constraints of data rate and energy harvesting amount at the TS users and the equal time-switching periods. The successive convex approximation and alternating optimization methods are exploited to construct efficient algorithms for finding the suboptimal precoding beamforming vectors at the BS and the phase shifts at the IRS elements. Finally, the numerical results show convergence and significant improvement in performance as compared to conventional baseline schemes

    Dispersion and nonlinearity properties of small solid-core photonic fibers with As2Se3 substrate

    Get PDF
    Characteristics of As2Se3 photonic crystal fibers (PCFs) with a solid-core and small-core diameter are numerically investigated in the long-wavelength range (from 2 to 10 μm). A full modal analysis and optical properties of designed photonic crystal fibers with lattice constant Λ and filling factor d/Λ are presented in terms of chromatic dispersion, effective refractive index, nonlinear coefficients, and confinement loss. The simulation results show that a high nonlinear coefficient of 4410.303 W–1·km–1 and a low confinement loss of 10−20 dB·km–1 can simultaneously be achieved in the proposed PCFs at a 4.5 μm wavelength. Chromatic dispersions are flat. The values of dispersion increase with increasing filling factor d/Λ and decrease with the increase in lattice constant Λ. In particular, some chromatic dispersion curves also cut the zero-dispersion line at two points. The flat dispersion feature, high nonlinearity, and small confinement loss of the proposed photonic crystal fiber structure make it suitable for supercontinuum
    • …
    corecore