78 research outputs found

    Planning Framework Options for The Massachusetts Ocean Plan (DRAFT)

    Get PDF
    The Massachusetts Ocean Partnership (MOP) Planning Frameworks Team, in consultation with the Massachusetts Executive Office of Energy and Environmental Affairs (EEA), and based on collective experience and a review of ocean, coastal and resource management programs from the US and other countries, suggests that nine elements are essential components of the framework for the Massachusetts Ocean Plan and its implementation. While management plans and programs generally have these elements in common, there are a range of options for carrying out each program component. These options were presented to structure and inform the development of the Massachusetts Ocean Plan. For the most part, the range of options represents those that were considered to be appropriate under the Commonwealth’s existing legal and administrative structure and responsive to the requirements of the Massachusetts Ocean Act. However, the general concepts these options represent are likely to be transferable to other jurisdictions (especially in the United States) and can inform future ocean management and planning in Massachusetts. Additionally, options or their core elements can be combined to create additional alternatives within one of the nine planning components

    Agricultural Research Service Weed Science Research: Past, Present, and Future

    Get PDF
    The U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed-crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America\u27s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency\u27s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being

    Leaf colour as a signal of chemical defence to insect herbivores in wild cabbage (Brassica Oleracea)

    Get PDF
    Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour

    A neurophysiological interpretation of the respiratory act

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47945/1/10254_2005_Article_BF02320667.pd

    Between Convergence and Exceptionalism: Americans and the British Model of Labor Relations, c. 1867–1920

    Full text link

    Biotransformations of Fenoxaprop-ethyl by Fluorescent Pseudomonas

    No full text

    Effects of the Fungal Bioherbicide, Alternaria cassia on Peroxidase, Pectinolytic and Proteolytic Activities in Sicklepod Seedlings

    No full text
    Certain plant pathogens have demonstrated potential for use as bioherbicides for weed control, and numerous studies have been published on this subject for several decades. One of the early examples of an important fungal bioherbicide is Alternaria cassiae, isolated from the weed sicklepod (Senna obtusifolia). To gain further insight into biochemical interactions of this fungus and its host weed, we examined the effects of this bioherbicide on various enzymes associated with plant defense. Young sicklepod seedlings were challenged with A. cassiae spore inoculum and enzyme activities associated with plant defense (peroxidase, proteolytic, and pectinolytic) were assayed periodically over a 96-h time course on plants grown in continuous darkness or continuous light. Peroxidase activity increased with time in untreated control seedlings in both light and dark, but the effect was greater in the light. In A. cassiae-treated plants, peroxidase was elevated above that in control tissue at all sample times resulting in a 1.5 -fold increase above control in light-grown tissue and a 2- to 3-fold increase in dark-grown tissue over 48–96 h. Differences in leucine aminopeptidase activity in control versus A. cassiae-treated tissues were not significant until 48–96 h, when activity was inhibited in fungus-treated tissues by about 32% in light-grown tissue and 27% in dark-grown tissue after 96 h. Proteolytic activity on benzoyl-arginine-p-nitroanilide was not significantly different in treated versus control tissue in either light or dark over the time course. Pectinase activity increased in treated tissues at all time points as early as 16 h after spore application in light- or dark-grown plants. The greatest increases were 1.5-fold above control levels in light-grown plants (40–64 h) and 2-fold in plants grown in darkness (72–96 h). Data suggests that peroxidase may be involved as defense mechanism of sicklepod when challenged by A. cassia and that this mechanism is operative in young seedlings under both light and dark growth conditions. Differential proteolytic activity responses on these two substrates suggests the presence of two different enzymes. Increased pectinase activity during pathogenesis suggests that A. cassiae-sicklepod interaction results in an infectivity mechanism to degrade pectic polymers important to sicklepod cell wall integrity. These studies provide important information on some biochemical interactions that may be useful for improvements to biological weed control programs utilizing plant pathogens. Such information may also be useful in genetic selection and manipulation of pathogens for weed control
    • …
    corecore