22,968 research outputs found

    Classical Effects of Laser Pulse Duration on Strong-field Double Ionization

    Full text link
    We use classical electron ensembles and the aligned-electron approximation to examine the effect of laser pulse duration on the dynamics of strong-field double ionization. We cover the range of intensities 1014−1016W/cm210^{14}-10^{16} W/cm^2 for the laser wavelength 780 nm. The classical scenario suggests that the highest rate of recollision occurs early in the pulse and promotes double ionization production in few-cycle pulses. In addition, the purely classical ensemble calculation predicts an exponentially decreasing recollision rate with each subsequent half cycle. We confirm the exponential behavior by trajectory back-analysis

    Noncommutative D-Brane in Non-Constant NS-NS B Field Background

    Get PDF
    We show that when the field strength H of the NS-NS B field does not vanish, the coordinates X and momenta P of an open string endpoints satisfy a set of mixed commutation relations among themselves. Identifying X and P with the coordinates and derivatives of the D-brane world volume, we find a new type of noncommutative spaces which is very different from those associated with a constant B field background.Comment: 11 pages, Latex, minor modification

    Comment on ``Dispersion-Independent High-Visibility Quantum Interference ... "

    Full text link
    We show in this Comment that the interpretation of experimental data as well as the theory presented in Atat\"ure et al. [Phys. Rev. Lett. 84, 618 (2000)] are incorrect and discuss why such a scheme cannot be used to "recover" high-visibility quantum interference.Comment: Comment on Atat\"ure et al. [Phys. Rev. Lett. 84, 618 (2000)], 2nd revision, To appear in Phys. Rev. Lett. April, (2001

    Non-Sequential Double Ionization is a Completely Classical Photoelectric Effect

    Full text link
    We introduce a unified and simplified theory of atomic double ionization. Our results show that at high laser intensities (I≥1014I \ge 10^{14} watts/cm2^2) purely classical correlation is strong enough to account for all of the main features observed in experiments to date

    The Maslov Gerbe

    Full text link
    Let Lag(E) be the grassmannian of lagrangian subspaces of a complex symplectic vector space E. We construct a Maslov class which generates the second integral cohomology of Lag(E), and we show that its mod 2 reduction is the characteristic class of a flat gerbe with structure group Z_2. We explain the relation of this gerbe to the well-known flat Maslov line bundle with structure group Z_4 over the real lagrangian grassmannian, whose characteristic class is the mod 4 reduction of the real Maslov class.Comment: 8 page

    Poincar\'e gauge theory with even and odd parity dynamic connection modes: isotropic Bianchi cosmological models

    Full text link
    The Poincar\'e gauge theory of gravity has a metric compatible connection with independent dynamics that is reflected in the torsion and curvature. The theory allows two good propagating spin-0 modes. Dynamical investigations using a simple expanding cosmological model found that the oscillation of the 0+^+ mode could account for an accelerating expansion similar to that presently observed. The model has been extended to include a 0−0^{-} mode and more recently cross parity couplings. We investigate the dynamics of this model in a situation which is simple, non-trivial, and yet may give physically interesting results that might be observable. We consider homogeneous cosmologies, more specifically, isotropic Bianchi class A models. We find an effective Lagrangian for our dynamical system, a system of first order equations, and present some typical dynamical evolution.Comment: 8 pages, 1 figures, submitted to IARD 2010 Conference Proceedings in {\em Journal of Physics: Conference Series}, eds. L. Horwitz and M. Land (2011

    Two-component Bose-Einstein Condensates with Large Number of Vortices

    Full text link
    We consider the condensate wavefunction of a rapidly rotating two-component Bose gas with an equal number of particles in each component. If the interactions between like and unlike species are very similar (as occurs for two hyperfine states of 87^{87}Rb or 23^{23}Na) we find that the two components contain identical rectangular vortex lattices, where the unit cell has an aspect ratio of 3\sqrt{3}, and one lattice is displaced to the center of the unit cell of the other. Our results are based on an exact evaluation of the vortex lattice energy in the large angular momentum (or quantum Hall) regime.Comment: 4 pages, 2 figures, RevTe

    Low temperature specific heat of the heavy fermion superconductor PrOs4_4Sb12_{12}

    Full text link
    We report the magnetic field dependence of the low temperature specific heat of single crystals of the first Pr-based heavy fermion superconductor PrOs4_4Sb12_{12}. The low temperature specific heat and the magnetic phase diagram inferred from specific heat, resistivity and magnetisation provide compelling evidence of a doublet ground state and hence superconductivity mediated by quadrupolar fluctuations. This establishes PrOs4_4Sb12_{12} as a very strong contender of superconductive pairing that is neither electron-phonon nor magnetically mediated.Comment: 4 pages, 4 figure

    Rotating Black Holes in Metric-Affine Gravity

    Full text link
    Within the framework of metric-affine gravity (MAG, metric and an independent linear connection constitute spacetime), we find, for a specific gravitational Lagrangian and by using {\it prolongation} techniques, a stationary axially symmetric exact solution of the vacuum field equations. This black hole solution embodies a Kerr-deSitter metric and the post-Riemannian structures of torsion and nonmetricity. The solution is characterized by mass, angular momentum, and shear charge, the latter of which is a measure for violating Lorentz invariance.Comment: 32 pages latex, 3 table
    • …
    corecore