1,389 research outputs found

    Microfabrication of Microchannels for Fuel Cell Plates

    Get PDF
    Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating

    Free Vibration of Layered Circular Cylindrical Shells of Variable Thickness Using Spline Function Approximation

    Get PDF
    Free vibration of layered circular cylindrical shells of variable thickness is studied using spline function approximation by applying a point collocation method. The shell is made up of uniform layers of isotropic or specially orthotropic materials. The equations of motions in longitudinal, circumferential and transverse displacement components, are derived using extension of Love's first approximation theory. The coupled differential equations are solved using Bickley-type splines of suitable order, which are cubic and quintic, by applying the point collocation method. This results in the generalized eigenvalue problem by combining the suitable boundary conditions. The effect of frequency parameters and the corresponding mode shapes of vibration are studied with different thickness variation coefficients, and other parameters. The thickness variations are assumed to be linear, exponential, and sinusoidal along the axial direction. The results are given graphically and comparisons are made with those results obtained using finite element method

    Study of a Vocal Feature Selection Method and Vocal Properties for Discriminating Four Constitution Types

    Get PDF
    The voice has been used to classify the four constitution types, and to recognize a subject's health condition by extracting meaningful physical quantities, in traditional Korean medicine. In this paper, we propose a method of selecting the reliable variables from various voice features, such as frequency derivative features, frequency band ratios, and intensity, from vowels and a sentence. Further, we suggest a process to extract independent variables by eliminating explanatory variables and reducing their correlation and remove outlying data to enable reliable discriminant analysis. Moreover, the suitable division of data for analysis, according to the gender and age of subjects, is discussed. Finally, the vocal features are applied to a discriminant analysis to classify each constitution type. This method of voice classification can be widely used in the u-Healthcare system of personalized medicine and for improving diagnostic accuracy

    Fate of Sudden Deafness Occurring in the Only Hearing Ear: Outcomes and Timing to Consider Cochlear Implantation

    Get PDF
    The present study was undertaken to learn the outcome of patients with idiopathic sudden sensorineural hearing loss (ISSNHL) in their only hearing ear. Timing to conduct a cochlear implantation was also determined in those who did not recover the hearing. The study group comprised 25 patients who confronted ISSNHL in their only hearing ear. A total of 192 patients, who had ISSNHL in one ear and had normal contralateral ear, served as the control. Demographically there were no significant differences between the groups. The recovery rate was similar between the groups: 64.0% in the experimental and 62.5% in the control group. The duration until the recovery of ISSNHL in the only hearing ear was 5-90 days (average 17.6 days). In the experimental group, 8 patients did not recover from ISSNHL, and underwent cochlear implantation in 6 with satisfactory results. These results suggest that the same treatment is applicable for patients with ISSNHL regardless of whether their contralateral ear is deaf or normal. For those who do not recover from ISSNHL in their only hearing ear, culminating in bilateral deafness, we may consider further definitive treatment including cochlear implantation as early as 3 months after initiating the treatment of ISSNHL

    Fate of Sudden Deafness Occurring in the Only Hearing Ear: Outcomes and Timing to Consider Cochlear Implantation

    Get PDF
    The present study was undertaken to learn the outcome of patients with idiopathic sudden sensorineural hearing loss (ISSNHL) in their only hearing ear. Timing to conduct a cochlear implantation was also determined in those who did not recover the hearing. The study group comprised 25 patients who confronted ISSNHL in their only hearing ear. A total of 192 patients, who had ISSNHL in one ear and had normal contralateral ear, served as the control. Demographically there were no significant differences between the groups. The recovery rate was similar between the groups: 64.0% in the experimental and 62.5% in the control group. The duration until the recovery of ISSNHL in the only hearing ear was 5-90 days (average 17.6 days). In the experimental group, 8 patients did not recover from ISSNHL, and underwent cochlear implantation in 6 with satisfactory results. These results suggest that the same treatment is applicable for patients with ISSNHL regardless of whether their contralateral ear is deaf or normal. For those who do not recover from ISSNHL in their only hearing ear, culminating in bilateral deafness, we may consider further definitive treatment including cochlear implantation as early as 3 months after initiating the treatment of ISSNHL

    Characteristics of the aberrant pyramidal tract in comparison with the pyramidal tract in the human brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aberrant pyramidal tract (APT) refers to the collateral pathway of the pyramidal tract (PT) through the medial lemniscus in the midbrain and pons. Using diffusion tensor tractography (DTT), we investigated the characteristics of the APT in comparison with the PT in the normal human brain.</p> <p>Results</p> <p>In thirty-four (18.3%, right hemisphere: 20, left hemisphere: 14) of the 186 hemispheres, the APTs separated from the PT at the upper midbrain level, descended through the medial lemniscus from the midbrain to the pons, and then rejoined with the PT at the upper medulla. Nine (26.5%) of the 34 APTs were found to originate from the primary somatosensory cortex without a primary motor cortex origin. Values of fractional anisotropy (FA) and tract volume of the APT were lower than those of the PT (<it>P </it>< 0.05); however, no difference in mean diffusivity (MD) value was observed (<it>P ></it>0.05).</p> <p>Conclusion</p> <p>We found that the APT has different characteristics, including less directionality, fewer neural fibers, and less origin from the primary motor cortex than the PT.</p

    Fabrication of AlGaN/GaN Fin-Type HEMT Using a Novel T-Gate Process for Improved Radio-Frequency Performance

    Get PDF
    To increase the radio-frequency (RF) performance of AlGaN/GaN-based fin-type high electron mobility transistors (HEMTs), a novel T-gate process was developed and applied to fabricate a device with high RF performance. In a single lithography process, the applied T-gate process shows a technique for forming a T-gate using the reactivity difference of several photoresists. The fabricated device has a steep fin width (W-fin) of 130 nm, a fin height (H-fin) of 250 nm, and a gate length (L-G) of 190 nm. The device exhibits a low leakage current (I-off) of 6.6 x 10(-10) A/mm and a high I-on/I-off current ratio of 4.7 x 10(8). Moreover, the fabricated device achieved a high cut-off frequency (f(T)) of 9.7 GHz and a very high maximum oscillation frequency (f(max)) of 27.8 GHz. The f(max) value of the proposed device is 138% higher than that of GaN-based fin-type HEMTs without T-gate.1

    Silicon@porous nitrogen-doped carbon spheres through a bottom-up approach are highly robust lithium-ion battery anodes

    Get PDF
    Due to its excellent capacity, around 4000 mA h g(-1), silicon has been recognized as one of the most promising lithium-ion battery anodes, especially for future large-scale applications including electrical vehicles and utility power grids. Nevertheless, Si suffers from a short cycle life as well as limitations for scalable electrode fabrication. Herein, we report a novel design for highly robust and scalable Si anodes: Si nanoparticles embedded in porous nitrogen-doped carbon spheres (NCSs). The porous nature of NCSs buffers the volume changes of Si nanoparticles and thus resolves critical issues of Si anode operations, such as pulverization, vulnerable contacts between Si and carbon conductors, and an unstable solid-electrolyte interphase. The unique electrode structure exhibits outstanding performance with a gravimetric capacity as high as 1579 mA h g(-1) at a C/10 rate based on the mass of both Si and C, a cycle life of 300 cycles with 94% capacity retention, as well as a discharge rate capability of 6 min while retaining a capacity of 702 mA h g(-1). Significantly, the coulombic efficiencies of this structure reach 99.99%. The assembled structure suggests a design principle for high capacity alloying electrodes that suffer from volume changes during battery operations.

    Interfacial Engineering at Quantum Dot-Sensitized TiO2 Photoelectrodes for Ultrahigh Photocurrent Generation

    Get PDF
    Metal oxide semiconductor/chalcogenide quantum dot (QD) heterostructured photoanodes show photocurrent densities >30 mA/cm2 with ZnO, approaching the theoretical limits in photovoltaic (PV) cells. However, comparative performance has not been achieved with TiO2. Here, we applied a TiO2(B) surface passivation layer (SPL) on TiO2/QD (PbS and CdS) and achieved a photocurrent density of 34.59 mA/cm2 under AM 1.5G illumination for PV cells, the highest recorded to date. The SPL improves electron conductivity by increasing the density of surface states, facilitating multiple trapping/detrapping transport, and increasing the coordination number of TiO2 nanoparticles. This, along with impeded electron recombination, led to enhanced collection efficiency, which is a major factor for performance. Furthermore, SPL-treated TiO2/QD photoanodes were successfully exploited in photoelectrochemical water splitting cells, showing an excellent photocurrent density of 14.43 mA/cm2 at 0.82 V versus the Reversible Hydrogen Electrode (RHE). These results suggest a new promising strategy for the development of high-performance photoelectrochemical devices.Funding for open access charge: CRUE-Universitat Jaume IThis work was supported by the Korea Center for Artificial Photosynthesis (KCAP) of Sogang University, funded by the Ministry of Science, ICT, and Future Planning (MSIP) through a National Research Foundation of Korea (Grant no. 2009-0093883). This work also was supported by a grant from the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (NRF-2019R1A2C1003429) and by the Ministry of Education (NRF-2018R1A6A1A03024231). Also, this work was supported by the Ministerio de Ciencia, Innovacio′n y Universidades of Spain through the project ENE2017–85087-C3-1-R. Therefore, the authors acknowledge and thank the Korean and Spanish governments for technical and financial support. S. D. G

    Relationship between age and injury severity in traffic accidents involving elderly pedestrians

    Get PDF
    Objective This study aimed to examine whether injury severity differs with respect to age among elderly pedestrians involved in traffic accidents and identify factors affecting injury severity. Methods Using emergency department-based injury in-depth surveillance data, we analyzed the data of patients aged ≥60 years who were victims of pedestrian traffic accidents during 2011 to 2016. The pedestrians’ ages were divided into 5-year age strata beginning at 60 years. In a multivariate analysis, injury severity was classified as severe to critical or mild to moderate. Results The analysis included 10,449 patients. All age groups had a female predominance, and accidents most frequently occurred during the early morning. Multivariate analyses revealed that compared to the 60 to 64 years group, the odds ratios for incurring a severe injury were 1.18 (95% confidence interval [CI], 1.02 to 1.37) for the 65 to 69 years group, 1.42 (95% CI, 1.23 to 1.64) for the 70 to 74 years group, 1.70 (95% CI, 1.45 to 1.98) for the 75 to 79 years group, and 1.83 (95% CI, 1.56 to 2.15) for the ≥80 years group. Conclusion In this study of emergency department-based data, we found that injury severity increased with age among elderly victims of traffic accidents. Furthermore, injury severity varied with respect to sex, time and location of the accident, and type of vehicle involved. Therefore, measures intended to reduce and prevent traffic accidents involving elderly pedestrians should consider these findings
    corecore