905 research outputs found
Recommended from our members
Customer Perceptions of Workplace Incivility in Singapore
Workplace incivility is found to be on the rise and exists widely in Asian workplaces. The combination of stress, less formal organisational structures and technological advancements has been found to contribute to a surge in workplace incivility. The negative effects of workplace incivility lead to problems in productivity, employee retention and service delivery. This exploratory study aims to examine whether workplace incivility is prevalent in 5-star hotels and premier restaurants in Singapore, from the perception of customers. Results of the conducted study show that customers see that workplace incivility is prevalent. Findings showed that co-workers did not greet or acknowledge each other during work and the critical service values of courtesy and friendliness were also not consistently demonstrated towards their internal or external guests. We suspect that key stakeholders within the hospitality and tourism industry in Singapore are unaware that workplace incivility can critically paralyse the ability of their staff to deliver excellent service and can hinder Singapore from achieving high ratings in the Customer Service Index
Injectable biodegradable poly(ester-co-ether) methacrylate monomers for bone tissue engineering and drug delivery applications.
The aim of this project was to produce strong, fast photocuring polymer adhesives and composites for biomedical applications that degrade and can release drugs at a controllable rate after set. Five ABA triblock poly(lactide-co-propylene glycol-co- lactide)s with 7, 17 or 34 propylene glycol and 2, 4 or 8 lactic acid units in each B and A block respectively, end capped with methacrylate groups, were prepared. Using FTIR, Raman and NMR, the relative lactide, polypropylene glycol and methacrylate levels in the monomer were proved controllable and as expected from reactant ratios. Polymerisation rates upon blue light exposure for 60, 120 or 240 s using 0.5, 1 or 2 wt% initiators were determined. The shortest monomer with 0.5 wt% initiator achieved 96 % conversion by 120 s after start of 60 s illumination, forming a semi-rigid polymer that in water degraded almost linearly with time with 19 wt% material loss over 14 weeks. Raising initiator concentration reduced polymerisation rate on the lower surface of samples. Increasing the number of lactic acid units in each A block from 2 to 8 enhanced water sorption and increased average total mass loss in 14 weeks to 60 wt% but degradation rate decreased with time. Monomers produced with longer polypropylene glycol B blocks required longer periods of light exposure for full cure and the final more flexible polymers exhibited slower non-linear degradation. Drug release was controlled by varying monomer composition and drug loading level. With hydrophobic ketoprofen, release was more enhanced from rapid-eroding, high water-absorbing polymers. Release of the more water-soluble chlorhexidine diacetate and prednisolone were affected more by polymer swelling and drug diffusion rates through the polymer. Two highly soluble phosphate glasses (67 wt%) were added to one monomer producing composites without losing the rapid set capacity of the polymer. Within a few days in water the glass was leached out providing a means to generate a porous structure. Replacement of phosphate glass with p-tricalcium phosphate and monocalcium phosphate monohydrate filler increased the composite modulus by an order of magnitude upon water sorption, buffered the acidic polymer degradation products and raised the polymer erosion rate significantly. Through further investigations, these polymers and composites should potentially provide a new range of injectable biodegradable slow drug-releasing adhesive materials for various applications in bone tissue engineering and drug delivery
XRD, AFM and UV-Vis optical studies of PbSe thin films produced by chemical bath deposition method.
PbSe thin �films have been deposited on microscope glass substrates by chemical bath deposition technique. The chemical bath consisted of lead nitrate, sodium selenate and triethanolamine solutions. The influence of bath temperature on the properties of PbSe �lms was investigated. The X-ray diff�raction, atomic force microscope and UV/Vis Spectrophotometer were used to obtain the structural
characterization, surface morphological and absorbance data, respectively. Based on the X-ray diff�raction
results, the thin �films obtained were found to be polycrystalline in nature with cubic structure. The
intensity of the (111) peak showed a signifi�cant increased as the bath temperature was increased from 40 to 80C. The �films deposited at 80C indicated that the crystallinity was improved and more PbSe peaks were observed. On the other hand, the grain size, fi�lm thickness and surface roughness were increased while band gap energy decreased as could be observed in atomic force microscope and UV-Vis optical
studies, respectively
Approximate k-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry
Using an approximation scheme to deal with the centrifugal
(pseudo-centrifugal) term, we solve the Dirac equation with the screened
Coulomb (Yukawa) potential for any arbitrary spin-orbit quantum number
{\kappa}. Based on the spin and pseudospin symmetry, analytic bound state
energy spectrum formulas and their corresponding upper- and lower-spinor
components of two Dirac particles are obtained using a shortcut of the
Nikiforov-Uvarov method. We find a wide range of permissible values for the
spin symmetry constant C_{s} from the valence energy spectrum of particle and
also for pseudospin symmetry constant C_{ps} from the hole energy spectrum of
antiparticle. Further, we show that the present potential interaction becomes
less (more) attractive for a long (short) range screening parameter {\alpha}.
To remove the degeneracies in energy levels we consider the spin and pseudospin
solution of Dirac equation for Yukawa potential plus a centrifugal-like term. A
few special cases such as the exact spin (pseudospin) symmetry Dirac-Yukawa,
the Yukawa plus centrifugal-like potentials, the limit when {\alpha} becomes
zero (Coulomb potential field) and the non-relativistic limit of our solution
are studied. The nonrelativistic solutions are compared with those obtained by
other methods.Comment: 21 pages, 6 figure
Estimating nonresponse bias and mode effects in a mixed mode survey
In mixed-mode surveys, it is difficult to separate sample selection differences from mode-effects that can occur when respondents respond in different interview settings. This paper provides a framework for separating mode-effects from selection effects by matching very similar respondents from different survey modes using propensity score matching. The answer patterns of the matched respondents are subsequently compared. We show that matching can explain differences in nonresponse and coverage in two Internet-samples. When we repeat this procedure for a telephone and Internet-sample however, differences persist between the samples after matching. This indicates the occurrence of mode-effects in telephone and Internet surveys. Mode-effects can be problematic; hence we conclude with a discussion of designs that can be used to explicitly study mode-effects
Cooperative Ring Exchange and Quantum Melting of Vortex Lattices in Atomic Bose-Einstein Condensates
Cooperative ring-exchange is suggested as a mechanism of quantum melting of
vortex lattices in a rapidly-rotating quasi two dimensional atomic
Bose-Einstein condensate (BEC). Using an approach pioneered by Kivelson et al.
[Phys. Rev. Lett. {\bf 56}, 873 (1986)] for the fractional quantized Hall
effect, we calculate the condition for quantum melting instability by
considering large-correlated ring exchanges in a two-dimensional Wigner crystal
of vortices in a strong `pseudomagnetic field' generated by the background
superfluid Bose particles. BEC may be profitably used to address issues of
quantum melting of a pristine Wigner solid devoid of complications of real
solids.Comment: 7 pages, 1 figure, to appear in Physical Review
Free expansion of lowest Landau level states of trapped atoms: a wavefunction microscope
We show that for any lowest-Landau-level state of a trapped, rotating,
interacting Bose gas, the particle distribution in coordinate space in a free
expansion (time of flight) experiment is related to that in the trap at the
time it is turned off by a simple rescaling and rotation. When the
lowest-Landau-level approximation is valid, interactions can be neglected
during the expansion, even when they play an essential role in the ground state
when the trap is present. The correlations in the density in a single snapshot
can be used to obtain information about the fluid, such as whether a transition
to a quantum Hall state has occurred.Comment: 5 pages, no figures. v2: discussion of neglect of interactions during
expansion improved, refs adde
Preparation and characterization of activated carbon from Typha orientalis leaves
Background
In this study, activated carbon (AC) was prepared from Typha orientalis or commonly known as cattail leaves using physical and chemical activation phosphoric acid (H3PO4), as dehydrating agent. A two-stage process was used, i.e., semi-carbonization stage at 200 °C for 15 min as first stage followed by second stage activation, at 500 °C for 45 min. The precursor material with the impregnated agent was exposed straight away to semi-carbonization and activation temperature using a laboratory scale muffle furnace (Carbolite RHF 1500, England) under static condition in a self-generated atmosphere.
Results
The best condition in AC production was based on chemical activation which is AC2 with 2 M of H3PO4. AC2 has the highest removal efficiency, 97.4 % in 4 ppm concentration of Pb(II) and percentage yield of 62.73 % could be reached. The pH of the AC was controlled in the range 5–6. From Fourier transform infrared spectroscopy, functional groups such as hydroxyl group, lactone group, and carboxyl group were obtained. These were clearly illustrated by scanning electron microscopy micrographs that porous structure was progressively developed with sponge-like structure.
Conclusions
The Pb(II) adsorption results were best fitted in the Langmuir isotherm for equilibrium data while the adsorption kinetic fitted to the pseudo-second order model. The maximum Brunauer, Emmett and Teller surface area of the best produced AC was found to be around 1,238 m2/g. The maximum adsorption capacity was found to be 7.95 mg/g
Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity
A formalism for studying spontaneous decay of an excited two-level atom in
the presence of dispersing and absorbing dielectric bodies is developed. An
integral equation, which is suitable for numerical solution, is derived for the
atomic upper-state-probability amplitude. The emission pattern and the power
spectrum of the emitted light are expressed in terms of the Green tensor of the
dielectric-matter formation including absorption and dispersion. The theory is
applied to the spontaneous decay of an excited atom at the center of a
three-layered spherical cavity, with the cavity wall being modeled by a
band-gap dielectric of Lorentz type. Both weak coupling and strong coupling are
studied, the latter with special emphasis on the cases where the atomic
transition is (i) in the normal-dispersion zone near the medium resonance and
(ii) in the anomalous-dispersion zone associated with the band gap. In a
single-resonance approximation, conditions of the appearance of Rabi
oscillations and closed solutions to the evolution of the atomic state
population are derived, which are in good agreement with the exact numerical
results.Comment: 12 pages, 6 figures, typos fixed, 1 figure adde
- …