6,535 research outputs found

    The Effect of Crack Orientation on Ethanol-Induced Crack Healing in Poly (Methyl Methacrylate)

    Get PDF
    [[abstract]]The line- and the cross-crack healing of Poly(methyl methacrylate) (PMMA) under the ethanol treatment at 40 C~60 C have been studied. The cross-crack means that the crack plane is vertical to the crack plane of the line-crack. The effective glass transition temperature of PMMAis reduced after the ethanol treatment. Both crack healings only occur at the effective glass transition temperature lower than the transport temperature. Both crack closure rates are constant. The closure rate of the cross-crack is higher than that of the line-crack. The analyses of the surface morphology and mechanical strength show that there are also two stages for crack healing which is wetting and diffusion. The tensile fracture stress of the healed specimen increases with a rise in volume fraction of the absorbing ethanol. The tensile fracture stress of healed PMMA with cross-crack only can be recovered to the virgin material. The tensile fracture stress of healed PMMAwith cross-crack is larger than that with the line-crack.[[notice]]補正完畢[[incitationindex]]E

    Band Gap Closing in a Synthetic Hall Tube of Neutral Fermions

    Get PDF
    We report the experimental realization of a synthetic three-leg Hall tube with ultracold fermionic atoms in a one-dimensional optical lattice. The legs of the synthetic tube are composed of three hyperfine spin states of the atoms, and the cyclic inter-leg links are generated by two-photon Raman transitions between the spin states, resulting in a uniform gauge flux ϕ\phi penetrating each side plaquette of the tube. Using quench dynamics, we investigate the band structure of the Hall tube system for a commensurate flux ϕ=2π/3\phi=2\pi/3. Momentum-resolved analysis of the quench dynamics reveals that a critical point of band gap closing as one of the inter-leg coupling strengths is varied, which is consistent with a topological phase transition predicted for the Hall tube system.Comment: 8 pages, 8 figure

    Linear electric generator with Halbach array to self-charge a smartphone

    Get PDF
    Cellular phones have not only function to communicate, but also have e-banking, web surfing, music, and entertainment. The performance of the smartphone has improved because of various functions of smartphone, and capacity of battery has also improved gradually. Although smartphone batteries have been improved compared to conventional batteries, the available usage time of a phone’s rechargeable battery is getting shorter because of the demands of various applications. Therefore, we propose a new tubular permanent magnet linear generator that uses a Halbach array, to send a message or emergency call when the battery is discharged. In order to increase the power generation of existing tubular linear generators, we changed the axial-direction permanent magnet array to a Halbach-type array. When using the Halbach array, it is possible to generate a strong magnetic field without additional magnetic material. In this research, we compared the Halbach array that uses axially and radially magnetized permanent magnets with an existing model that uses an axially magnets. We verified improvement in the amount of power generated with no-load analysis through simulation using the Maxwell commercial electromagnetic analysis software

    Double resonance of Raman transitions in a degenerate Fermi gas

    Get PDF
    We measure momentum-resolved Raman spectra of a spin-polarized degenerate Fermi gas of 173^{173}Yb atoms for a wide range of magnetic fields, where the atoms are irradiated by a pair of counterpropagating Raman laser beams as in the conventional spin-orbit coupling scheme. Double resonance of first- and second-order Raman transitions occurs at a certain magnetic field and the spectrum exhibits a doublet splitting for high laser intensities. The measured spectral splitting is quantitatively accounted for by the Autler-Townes effect. We show that our measurement results are consistent with the spinful band structure of a Fermi gas in the spatially oscillating effective magnetic field generated by the Raman laser fields.Comment: 7 pages, 6 figure

    Oblique DLCQ M-theory and Multiple M2-branes

    Full text link
    We propose an oblique DLCQ as a limit to realize a theory of multiple M2-branes in M(atrix)-theory context. The limit is a combination of an infinite boosting of a space-like circle and a tuned tilting of the circle direction. We obtain a series of supergravity solutions describing various dual configurations including multiple M2-branes. For an infinite boosting along a circle wrapped obliquely around a rectangular torus, Seiberg's DLCQ limit distorts the torus modulus. In the context of supergravity, we show explicitly how this torus modulus of M~\widetilde{\text M}-theory is realized as the vacuum modulus of dual IIB-theory.Comment: v3: 25pages, extended version, References adde

    Creutz ladder in a resonantly shaken 1D optical lattice

    Get PDF
    We report the experimental realization of a Creutz ladder for ultracold fermionic atoms in a resonantly driven 1D optical lattice. The two-leg ladder consists of the two lowest orbital states of the optical lattice and the cross inter-leg links are generated via two-photon resonant coupling between the orbitals by periodic lattice shaking. The characteristic pseudo-spin winding structure in the energy bands of the ladder system is demonstrated using momentum-resolved Ramsey-type interferometric measurements. We discuss a two-tone driving method to extend the inter-leg link control and propose a topological charge pumping scheme for the Creutz ladder system. ©2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaf

    Realization of a cross-linked chiral ladder with neutral fermions in an optical lattice by orbital-momentum coupling

    Get PDF
    We report the experimental realization of a cross-linked chiral ladder with ultracold fermionic atoms in an optical lattice. In the ladder, the legs are formed by the orbital states of the optical lattice and the complex inter-leg links are generated by the orbital-changing Raman transitions that are driven by a moving lattice potential superimposed onto the optical lattice. The effective magnetic flux per ladder plaquette is tuned by the spatial periodicity of the moving lattice, and the chiral currents are observed from the asymmetric momentum distributions of the orbitals. The effect of the complex cross links is demonstrated in quench dynamics by measuring the momentum dependence of the inter-orbital coupling strength. We discuss the topological phase transition of the chiral ladder system for the variations of the complex cross links.Comment: 8 pages, 8 figure

    Ultraviolet photodepletion spectroscopy of dibenzo-18-crown-6-ether complexes with alkali metal cations

    Get PDF
    Ultraviolet photodepletion spectra of dibenzo-18-crown-6-ether complexes with alkali metal cations (M+-DB18C6, M = Cs, Rb, K, Na, and Li) were obtained in the gas phase using electrospray ionization quadrupole ion-trap reflectron time-of-flight mass spectrometry. The spectra exhibited a few distinct absorption bands in the wavenumber region of 35450−37800 cm^(−1). The lowest-energy band was tentatively assigned to be the origin of the S_0-S_1 transition, and the second band to a vibronic transition arising from the “benzene breathing” mode in conjunction with symmetric or asymmetric stretching vibration of the bonds between the metal cation and the oxygen atoms in DB18C6. The red shifts of the origin bands were observed in the spectra as the size of the metal cation in M^+-DB18C6 increased from Li^+ to Cs^+. We suggested that these red shifts arose mainly from the decrease in the binding energies of larger-sized metal cations to DB18C6 at the electronic ground state. These size effects of the metal cations on the geometric and electronic structures, and the binding properties of the complexes at the S_0 and S_1 states were further elucidated by theoretical calculations using density functional and time-dependent density functional theories
    corecore