6,535 research outputs found
The Effect of Crack Orientation on Ethanol-Induced Crack Healing in Poly (Methyl Methacrylate)
[[abstract]]The line- and the cross-crack healing of Poly(methyl methacrylate) (PMMA) under the ethanol treatment at 40 C~60 C have been studied. The cross-crack means that the crack plane is vertical to the crack plane of the line-crack. The effective glass transition temperature of PMMAis reduced after the ethanol treatment. Both crack healings only occur at the effective glass transition temperature lower than the transport temperature. Both crack closure rates are constant. The closure rate of the cross-crack is higher than that of the line-crack. The analyses of the surface morphology and mechanical strength show that there are also two stages for crack healing which is wetting and diffusion. The tensile fracture stress of the healed specimen increases with a rise in volume fraction of the absorbing ethanol. The tensile fracture stress of healed PMMA with cross-crack only can be recovered to the virgin material. The tensile fracture stress of healed PMMAwith cross-crack is larger than that with the line-crack.[[notice]]補正完畢[[incitationindex]]E
Band Gap Closing in a Synthetic Hall Tube of Neutral Fermions
We report the experimental realization of a synthetic three-leg Hall tube
with ultracold fermionic atoms in a one-dimensional optical lattice. The legs
of the synthetic tube are composed of three hyperfine spin states of the atoms,
and the cyclic inter-leg links are generated by two-photon Raman transitions
between the spin states, resulting in a uniform gauge flux penetrating
each side plaquette of the tube. Using quench dynamics, we investigate the band
structure of the Hall tube system for a commensurate flux .
Momentum-resolved analysis of the quench dynamics reveals that a critical point
of band gap closing as one of the inter-leg coupling strengths is varied, which
is consistent with a topological phase transition predicted for the Hall tube
system.Comment: 8 pages, 8 figure
Linear electric generator with Halbach array to self-charge a smartphone
Cellular phones have not only function to communicate, but also have e-banking, web surfing, music, and entertainment. The performance of the smartphone has improved because of various functions of smartphone, and capacity of battery has also improved gradually. Although smartphone batteries have been improved compared to conventional batteries, the available usage time of a phone’s rechargeable battery is getting shorter because of the demands of various applications. Therefore, we propose a new tubular permanent magnet linear generator that uses a Halbach array, to send a message or emergency call when the battery is discharged. In order to increase the power generation of existing tubular linear generators, we changed the axial-direction permanent magnet array to a Halbach-type array. When using the Halbach array, it is possible to generate a strong magnetic field without additional magnetic material. In this research, we compared the Halbach array that uses axially and radially magnetized permanent magnets with an existing model that uses an axially magnets. We verified improvement in the amount of power generated with no-load analysis through simulation using the Maxwell commercial electromagnetic analysis software
Double resonance of Raman transitions in a degenerate Fermi gas
We measure momentum-resolved Raman spectra of a spin-polarized degenerate
Fermi gas of Yb atoms for a wide range of magnetic fields, where the
atoms are irradiated by a pair of counterpropagating Raman laser beams as in
the conventional spin-orbit coupling scheme. Double resonance of first- and
second-order Raman transitions occurs at a certain magnetic field and the
spectrum exhibits a doublet splitting for high laser intensities. The measured
spectral splitting is quantitatively accounted for by the Autler-Townes effect.
We show that our measurement results are consistent with the spinful band
structure of a Fermi gas in the spatially oscillating effective magnetic field
generated by the Raman laser fields.Comment: 7 pages, 6 figure
Oblique DLCQ M-theory and Multiple M2-branes
We propose an oblique DLCQ as a limit to realize a theory of multiple
M2-branes in M(atrix)-theory context. The limit is a combination of an infinite
boosting of a space-like circle and a tuned tilting of the circle direction. We
obtain a series of supergravity solutions describing various dual
configurations including multiple M2-branes. For an infinite boosting along a
circle wrapped obliquely around a rectangular torus, Seiberg's DLCQ limit
distorts the torus modulus. In the context of supergravity, we show explicitly
how this torus modulus of -theory is realized as the
vacuum modulus of dual IIB-theory.Comment: v3: 25pages, extended version, References adde
Creutz ladder in a resonantly shaken 1D optical lattice
We report the experimental realization of a Creutz ladder for ultracold fermionic atoms in a resonantly driven 1D optical lattice. The two-leg ladder consists of the two lowest orbital states of the optical lattice and the cross inter-leg links are generated via two-photon resonant coupling between the orbitals by periodic lattice shaking. The characteristic pseudo-spin winding structure in the energy bands of the ladder system is demonstrated using momentum-resolved Ramsey-type interferometric measurements. We discuss a two-tone driving method to extend the inter-leg link control and propose a topological charge pumping scheme for the Creutz ladder system. ©2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaf
Realization of a cross-linked chiral ladder with neutral fermions in an optical lattice by orbital-momentum coupling
We report the experimental realization of a cross-linked chiral ladder with
ultracold fermionic atoms in an optical lattice. In the ladder, the legs are
formed by the orbital states of the optical lattice and the complex inter-leg
links are generated by the orbital-changing Raman transitions that are driven
by a moving lattice potential superimposed onto the optical lattice. The
effective magnetic flux per ladder plaquette is tuned by the spatial
periodicity of the moving lattice, and the chiral currents are observed from
the asymmetric momentum distributions of the orbitals. The effect of the
complex cross links is demonstrated in quench dynamics by measuring the
momentum dependence of the inter-orbital coupling strength. We discuss the
topological phase transition of the chiral ladder system for the variations of
the complex cross links.Comment: 8 pages, 8 figure
Ultraviolet photodepletion spectroscopy of dibenzo-18-crown-6-ether complexes with alkali metal cations
Ultraviolet photodepletion spectra of dibenzo-18-crown-6-ether complexes with alkali metal cations (M+-DB18C6, M = Cs, Rb, K, Na, and Li) were obtained in the gas phase using electrospray ionization quadrupole ion-trap reflectron time-of-flight mass spectrometry. The spectra exhibited a few distinct absorption bands in the wavenumber region of 35450−37800 cm^(−1). The lowest-energy band was tentatively assigned to be the origin of the S_0-S_1 transition, and the second band to a vibronic transition arising from the “benzene breathing” mode in conjunction with symmetric or asymmetric stretching vibration of the bonds between the metal cation and the oxygen atoms in DB18C6. The red shifts of the origin bands were observed in the spectra as the size of the metal cation in M^+-DB18C6 increased from Li^+ to Cs^+. We suggested that these red shifts arose mainly from the decrease in the binding energies of larger-sized metal cations to DB18C6 at the electronic ground state. These size effects of the metal cations on the geometric and electronic structures, and the binding properties of the complexes at the S_0 and S_1 states were further elucidated by theoretical calculations using density functional and time-dependent density functional theories
- …