38,886 research outputs found

    Atmospheres and Spectra of Strongly Magnetized Neutron Stars II: Effect of Vacuum Polarization

    Get PDF
    We study the effect of vacuum polarization on the atmosphere structure and radiation spectra of neutron stars with surface magnetic fields B=10^14-10^15 G, as appropriate for magnetars. Vacuum polarization modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the MSW mechanism for neutrino oscillation. We construct atmosphere models in radiative equilibrium with an effective temperature of a few \times 10^6 K by solving the full radiative transfer equations for both polarization modes in a fully ionized hydrogen plasma. We discuss the subtleties in treating the vacuum polarization effects in the atmosphere models and present approximate solutions to the radiative transfer problem which bracket the true answer. We show from both analytic considerations and numerical calculations that vacuum polarization produces a broad depression in the X-ray flux at high energies (a few keV \la E \la a few tens of keV) as compared to models without vacuum polarization; this arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere. Thus the vacuum polarization effect softens the high energy tail of the thermal spectrum, although the atmospheric emission is still harder than the blackbody spectrum because of the non-grey opacities. We also show that the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line and therefore makes the line more difficult to observe.Comment: 21 pages, 21 figures; MNRAS; corrected minor typo

    Atmospheres and Spectra of Strongly Magnetized Neutron Stars

    Get PDF
    We construct atmosphere models for strongly magnetized neutron stars with surface fields B∼1012−1015B\sim 10^{12}-10^{15} G and effective temperatures Teff∼106−107T_{\rm eff}\sim 10^6-10^7 K. The atmospheres directly determine the characteristics of thermal emission from isolated neutron stars, including radio pulsars, soft gamma-ray repeaters, and anomalous X-ray pulsars. In our models, the atmosphere is composed of pure hydrogen or helium and is assumed to be fully ionized. The radiative opacities include free-free absorption and scattering by both electrons and ions computed for the two photon polarization modes in the magnetized electron-ion plasma. Since the radiation emerges from deep layers in the atmosphere with \rho\ga 10^2 g/cm3^3, plasma effects can significantly modify the photon opacities by changing the properties of the polarization modes. In the case where the magnetic field and the surface normal are parallel, we solve the full, angle-dependent, coupled radiative transfer equations for both polarization modes. We also construct atmosphere models for general field orientations based on the diffusion approximation of the transport equations and compare the results with models based on full radiative transport. In general, the emergent thermal radiation exhibits significant deviation from blackbody, with harder spectra at high energies. The spectra also show a broad feature (\Delta E/\Ebi\sim 1) around the ion cyclotron resonance \Ebi=0.63 (Z/A)(B/10^{14}{G}) keV, where ZZ and AA are the atomic charge and atomic mass of the ion, respectively; this feature is particularly pronounced when \Ebi\ga 3k\Teff. Detection of the resonance feature would provide a direct measurement of the surface magnetic fields on magnetars.Comment: 29 pages, 11 figures; corrected factor of 2 in He models: minor changes to figs 4 and 9 as a result; other very minor change

    Appropriate technology for Aboriginal Enterprise Development

    Get PDF
    RADG has been developing appropriate health technology for use in remote communities in Australia. The greatest need for these technologies has been in Aboriginal communities. In developing appropriate technical artifacts, RADG has confronted two problems. Firstly we require good contact with remote communities for consultation and feedback. Secondly, part of making artifacts appropriate for under-developed countries or regions, is the need to include employment and self-determination as part of the benefits of a technology

    Seismology of adolescent neutron stars: Accounting for thermal effects and crust elasticity

    Full text link
    We study the oscillations of relativistic stars, incorporating key physics associated with internal composition, thermal gradients and crust elasticity. Our aim is to develop a formalism which is able to account for the state-of-the-art understanding of the complex physics associated with these systems. As a first step, we build models using a modern equation of state including composition gradients and density discontinuities associated with internal phase-transitions (like the crust-core transition and the point where muons first appear in the core). In order to understand the nature of the oscillation spectrum, we carry out cooling simulations to provide realistic snapshots of the temperature distribution in the interior as the star evolves through adolescence. The associated thermal pressure is incorporated in the perturbation analysis, and we discuss the presence of gg-modes arising as a result of thermal effects. We also consider interface modes due to phase-transitions and the gradual formation of the star's crust and the emergence of a set of shear modes.Comment: 27 pages, 14 figure

    Biodegradable Polylactic Acid (PLA) Microstructures for Scaffold Applications

    Get PDF
    In this research, we present a simple and cost effective soft lithographic process to fabricate PLA scaffolds for tissue engineering. In which, the negative photoresist JSR THB-120N was spun on a glass subtract followed by conventional UV lithographic processes to fabricate the master to cast the PDMS elastomeric mold. A thin poly(vinyl alcohol) (PVA) layer was used as a mode release such that the PLA scaffold can be easily peeled off. The PLA precursor solution was then cast onto the PDMS mold to form the PLA microstructures. After evaporating the solvent, the PLA microstructures can be easily peeled off from the PDMS mold. Experimental results show that the desired microvessels scaffold can be successfully transferred to the biodegradable polymer PLA.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Atmospheres and radiating surfaces of neutron stars with strong magnetic fields

    Get PDF
    We review the current status of the theory of thermal emission from the surface layers of neutron stars with strong magnetic fields B∼1010−1015B\sim 10^{10}-10^{15} G, including formation of the spectrum in a partially ionized atmosphere and at a condensed surface. In particular, we describe recent progress in modeling partially ionized atmospheres of central compact objects in supernova remnants, which may have moderately strong fields B∼1010−1011B\sim 10^{10}-10^{11} G. Special attention is given to polarization of thermal radiation emitted by a neutron star surface. Finally, we briefly describe applications of the theory to observations of thermally emitting isolated neutron stars.Comment: 27 pages, 5 figures, invited review at the conference "The Modern Physics of Compact Stars 2015" (Yerevan, Armenia, Sept. 30 - Oct. 3, 2015), edited by R. Avagyan, A. Saharian, and A. Sedrakian. In v.2, a citation (Ref.114) is correcte
    • …
    corecore