6,695 research outputs found

    Perturbative QCD analysis of exclusive J/\psi+\eta_c production in e^+e^- annihilation

    Full text link
    We analyze the exclusive charmonium J/ψ+ηcJ/\psi+\eta_c pair production in e+ee^+e^- annihilation using the nonfactorized perturbative QCD and the light-front quark model(LFQM) that goes beyond the peaking approximation. We effectively include all orders of higher twist terms in the leading order of QCD coupling constant and compare our nonfactorized analysis with the usual factorized analysis in the calculation of the cross section. We also calculate the quark distribution amplitudes, the Gegenbauer moments, and the decay constants for J/ψJ/\psi and ηc\eta_c mesons using our LFQM. Our nonfactorized result enhances the NRQCD result by a factor of 343\sim4 at s=10.6\sqrt{s}=10.6 GeV.Comment: 17 pages, 6figures; added 2 more figures; version to appear in Physical Review

    Growth control of oxygen stoichiometry in homoepitaxial SrTiO3 films by pulsed laser epitaxy in high vacuum

    Get PDF
    In many transition metal oxides (TMOs), oxygen stoichiometry is one of the most critical parameters that plays a key role in determining the structural, physical, optical, and electrochemical properties of the material. However, controlling the growth to obtain high quality single crystal films having the right oxygen stoichiometry, especially in a high vacuum environment, has been viewed as a challenge. In this work, we show that through proper control of the plume kinetic energy, stoichiometric crystalline films can be synthesized without generating oxygen defects, even in high vacuum. We use a model homoepitaxial system of SrTiO3 (STO) thin films on single crystal STO substrates. Physical property measurements indicate that oxygen vacancy generation in high vacuum is strongly influenced by the energetics of the laser plume, and it can be controlled by proper laser beam delivery. Therefore, our finding not only provides essential insight into oxygen stoichiometry control in high vacuum for understanding the fundamental properties of STO-based thin films and heterostructures, but expands the utility of pulsed laser epitaxy of other materials as well

    lntracluster rearrangement of protonated nitric acid: Infrared spectroscopic studies of H^+(HNO_3)(H_2O)_n

    Get PDF
    Infrared spectra of clusters of protonated nitric acid and water exhibit a marked change with cluster size, indicating that an intracluster reaction occurs with sufficient solvation. In small clusters, H_2O binds to a nitronium ion core, but at a critical cluster size the NO^+_2 reacts. A lower bound of 174 kcal/mol is found for the proton affinity of HNO_3

    Distribution amplitudes and decay constants for (π,K,ρ,K)(\pi,K,\rho,K^*) mesons in light-front quark model

    Get PDF
    We present a calculation of the quark distribution amplitudes(DAs), the Gegenbauer moments, and decay constants for π,ρ,K\pi,\rho,K and KK^* mesons using the light-front quark model. While the quark DA for π\pi is somewhat broader than the asymptotic one, that for ρ\rho meson is very close to the asymptotic one. The quark DAs for KK and KK^* show asymmetric form due to the flavor SU(3)-symmetry breaking effect. The decay constants for the transversely polarized ρ\rho and KK^* mesons(fρTf^T_\rho and fKTf^T_{K^*}) as well as the longitudinally polarized ones(fρf_\rho and fKf_{K^*}) are also obtained. Our averaged values for fVT/fVf^T_V/f_V, i.e. (fρT/fρ)av=0.78(f^T_\rho/f_\rho)_{\rm av}=0.78 and (fKT/fK)av=0.84(f^T_{K^*}/f_{K^*})_{\rm av}=0.84, are found to be consistent with other model predictions. Especially, our results for the decay constants are in a good agreement with the SU(6) symmetry relation, fρ(K)T=(fπ(K)+fρ(K))/2f^T_{\rho(K^*)}=(f_{\pi(K)}+f_{\rho(K^*)})/2.Comment: 12 pages, 6figure

    Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4

    Get PDF
    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O ligands bound to a nitrosonium ion NO^+ core. They possessed perturbed H_2O stretch bands and dissociated by loss of H_2O. The H_2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm^(−1) and two new minor photodissociation channels, loss of HONO and loss of two H_2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H_3O^+(H_2O)_3(HONO), i.e., an adduct of the reaction products

    Air-coupled Ultrasonic Tomography for Internal Damage of Full-Scale Reinforced Concrete Moment Frame Components Subjected to Seismic Loadings

    Get PDF
    Full-scale reinforced concrete (RC) components are imaged using ultrasonic tomography before, during, and after simulated earthquake loads, up to a drift level of 1%, are applied. A total of five RC moment frame components, including three columns and two slab-beam-column sub-assemblages, are subjected to three different seismic loading protocols. Two advanced structural materials, ultra-high-performance fiber-reinforced concrete (UHP-FRC) and high-performance fiber-reinforced concrete (HPFRC) are used in one of the columns and one of the slab-beam- column sub-assemblages, respectively. The components contain embedded strain gauges that are used to establish accumulated damage at certain locations. Our hybrid air-coupled ultrasonic system is used to collect a large volume of through thickness ultrasonic data across the plastic hinge zone region of the components. The ultrasonic data sets are used to back-calculate wave velocity tomograms across the cross-section at the plastic hinge regions for each component. A comparison of ultrasonic and strain gauge data shows the great potential of using ultrasonic tomography to evaluate damage progression of RC structures both at global and local levels. The results also confirm that UHP-FRC and HPFRC behave differently from conventional reinforced concrete

    Scaling laws for the photo-ionisation cross section of two-electron atoms

    Get PDF
    The cross sections for single-electron photo-ionisation in two-electron atoms show fluctuations which decrease in amplitude when approaching the double-ionisation threshold. Based on semiclassical closed orbit theory, we show that the algebraic decay of the fluctuations can be characterised in terms of a threshold law σEμ\sigma \propto |E|^{\mu} as E0E \to 0_- with exponent μ\mu obtained as a combination of stability exponents of the triple-collision singularity. It differs from Wannier's exponent dominating double ionisation processes. The details of the fluctuations are linked to a set of infinitely unstable classical orbits starting and ending in the non-regularisable triple collision. The findings are compared with quantum calculations for a model system, namely collinear helium.Comment: 4 pages, 1 figur

    Identification of a WNT5A-Responsive Degradation Domain in the Kinesin Superfamily Protein KIF26B.

    Get PDF
    Noncanonical WNT pathways function independently of the β-catenin transcriptional co-activator to regulate diverse morphogenetic and pathogenic processes. Recent studies showed that noncanonical WNTs, such as WNT5A, can signal the degradation of several downstream effectors, thereby modulating these effectors' cellular activities. The protein domain(s) that mediates the WNT5A-dependent degradation response, however, has not been identified. By coupling protein mutagenesis experiments with a flow cytometry-based degradation reporter assay, we have defined a protein domain in the kinesin superfamily protein KIF26B that is essential for WNT5A-dependent degradation. We found that a human disease-causing KIF26B mutation located at a conserved amino acid within this domain compromises the ability of WNT5A to induce KIF26B degradation. Using pharmacological perturbation, we further uncovered a role of glycogen synthase kinase 3 (GSK3) in WNT5A regulation of KIF26B degradation. Lastly, based on the identification of the WNT5A-responsive domain, we developed a new reporter system that allows for efficient profiling of WNT5A-KIF26B signaling activity in both somatic and stem cells. In conclusion, our study identifies a new protein domain that mediates WNT5A-dependent degradation of KIF26B and provides a new tool for functional characterization of noncanonical WNT5A signaling in cells
    corecore