51 research outputs found

    The genetic interplay between body mass index, breast size and breast cancer risk: a Mendelian randomization analysis.

    Get PDF
    BACKGROUND: Evidence linking breast size to breast cancer risk has been inconsistent, and its interpretation is often hampered by confounding factors such as body mass index (BMI). Here, we used linkage disequilibrium score regression and two-sample Mendelian randomization (MR) to examine the genetic associations between BMI, breast size and breast cancer risk. METHODS: Summary-level genotype data from 23andMe, Inc (breast size, n = 33 790), the Breast Cancer Association Consortium (breast cancer risk, n = 228 951) and the Genetic Investigation of ANthropometric Traits (BMI, n = 183 507) were used for our analyses. In assessing causal relationships, four complementary MR techniques [inverse variance weighted (IVW), weighted median, weighted mode and MR-Egger regression] were used to test the robustness of the results. RESULTS: The genetic correlation (rg) estimated between BMI and breast size was high (rg = 0.50, P = 3.89x10-43). All MR methods provided consistent evidence that higher genetically predicted BMI was associated with larger breast size [odds ratio (ORIVW): 2.06 (1.80-2.35), P = 1.38x10-26] and lower overall breast cancer risk [ORIVW: 0.81 (0.74-0.89), P = 9.44x10-6]. No evidence of a relationship between genetically predicted breast size and breast cancer risk was found except when using the weighted median and weighted mode methods, and only with oestrogen receptor (ER)-negative risk. There was no evidence of reverse causality in any of the analyses conducted (P > 0.050). CONCLUSION: Our findings indicate a potential positive causal association between BMI and breast size and a potential negative causal association between BMI and breast cancer risk. We found no clear evidence for a direct relationship between breast size and breast cancer risk

    Germline breast cancer susceptibility genes, tumor characteristics, and survival.

    Get PDF
    BACKGROUND: Mutations in certain genes are known to increase breast cancer risk. We study the relevance of rare protein-truncating variants (PTVs) that may result in loss-of-function in breast cancer susceptibility genes on tumor characteristics and survival in 8852 breast cancer patients of Asian descent. METHODS: Gene panel sequencing was performed for 34 known or suspected breast cancer predisposition genes, of which nine genes (ATM, BRCA1, BRCA2, CHEK2, PALB2, BARD1, RAD51C, RAD51D, and TP53) were associated with breast cancer risk. Associations between PTV carriership in one or more genes and tumor characteristics were examined using multinomial logistic regression. Ten-year overall survival was estimated using Cox regression models in 6477 breast cancer patients after excluding older patients (≥75years) and stage 0 and IV disease. RESULTS: PTV9genes carriership (n = 690) was significantly associated (p < 0.001) with more aggressive tumor characteristics including high grade (poorly vs well-differentiated, odds ratio [95% confidence interval] 3.48 [2.35-5.17], moderately vs well-differentiated 2.33 [1.56-3.49]), as well as luminal B [HER-] and triple-negative subtypes (vs luminal A 2.15 [1.58-2.92] and 2.85 [2.17-3.73], respectively), adjusted for age at diagnosis, study, and ethnicity. Associations with grade and luminal B [HER2-] subtype remained significant after excluding BRCA1/2 carriers. PTV25genes carriership (n = 289, excluding carriers of the nine genes associated with breast cancer) was not associated with tumor characteristics. However, PTV25genes carriership, but not PTV9genes carriership, was suggested to be associated with worse 10-year overall survival (hazard ratio [CI] 1.63 [1.16-2.28]). CONCLUSIONS: PTV9genes carriership is associated with more aggressive tumors. Variants in other genes might be associated with the survival of breast cancer patients. The finding that PTV carriership is not just associated with higher breast cancer risk, but also more severe and fatal forms of the disease, suggests that genetic testing has the potential to provide additional health information and help healthy individuals make screening decisions

    Polygenic risk scores for prediction of breast cancer risk in Asian populations.

    Get PDF
    PURPOSE: Non-European populations are under-represented in genetics studies, hindering clinical implementation of breast cancer polygenic risk scores (PRSs). We aimed to develop PRSs using the largest available studies of Asian ancestry and to assess the transferability of PRS across ethnic subgroups. METHODS: The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases). RESULTS: The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk. CONCLUSION: PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry

    European polygenic risk score for prediction of breast cancer shows similar performance in Asian women

    Get PDF
    Abstract: Polygenic risk scores (PRS) have been shown to predict breast cancer risk in European women, but their utility in Asian women is unclear. Here we evaluate the best performing PRSs for European-ancestry women using data from 17,262 breast cancer cases and 17,695 controls of Asian ancestry from 13 case-control studies, and 10,255 Chinese women from a prospective cohort (413 incident breast cancers). Compared to women in the middle quintile of the risk distribution, women in the highest 1% of PRS distribution have a ~2.7-fold risk and women in the lowest 1% of PRS distribution has ~0.4-fold risk of developing breast cancer. There is no evidence of heterogeneity in PRS performance in Chinese, Malay and Indian women. A PRS developed for European-ancestry women is also predictive of breast cancer risk in Asian women and can help in developing risk-stratified screening programmes in Asia

    Breast Cancer in Asia: Incidence, Mortality, Early Detection, Mammography Programs, and Risk-Based Screening Initiatives

    No full text
    Close to half (45.4%) of the 2.3 million breast cancers (BC) diagnosed in 2020 were from Asia. While the burden of breast cancer has been examined at the level of broad geographic regions, literature on more in-depth coverage of the individual countries and subregions of the Asian continent is lacking. This narrative review examines the breast cancer burden in 47 Asian countries. Breast cancer screening guidelines and risk-based screening initiatives are discussed

    Health-related quality of life in Asian patients with breast cancer : a systematic review

    No full text
    OBJECTIVE: To summarise the evidence on determinants of health-related quality of life (HRQL) in Asian patients with breast cancer. DESIGN: Systematic review conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations and registered with PROSPERO (CRD42015032468). METHODS: According to the PRISMA guidelines, databases of MEDLINE (PubMed), Embase and PsycINFO were systematically searched using the following terms and synonyms: breast cancer, quality of life and Asia. Articles reporting on HRQL using EORTC-QLQ-C30, EORTC-QLQ-BR23, FACT-G and FACT-B questionnaires in Asian patients with breast cancer were eligible for inclusion. The methodological quality of each article was assessed using the quality assessment scale for cross-sectional studies or the Newcastle-Ottawa Quality Assessment Scale for cohort studies. RESULTS: Fifty-seven articles were selected for this qualitative synthesis, of which 43 (75%) were cross-sectional and 14 (25%) were longitudinal studies. Over 75 different determinants of HRQL were studied with either the EORTC or FACT questionnaires. Patients with comorbidities, treated with chemotherapy, with less social support and with more unmet needs have poorer HRQL. HRQL improves over time. Discordant results in studies were found in the association of age, marital status, household income, type of surgery, radiotherapy and hormone therapy and unmet sexuality needs with poor global health status or overall well-being. CONCLUSIONS: In Asia, patients with breast cancer, in particular those with other comorbidities and those treated with chemotherapy, with less social support and with more unmet needs, have poorer HRQL. Appropriate social support and meeting the needs of patients may improve patients' HRQL

    Breast cancer risk stratification using genetic and non-genetic risk assessment tools for 246,142 women in the UK Biobank

    No full text
    10.1016/j.gim.2023.100917GENETICS IN MEDICINE251

    Determinants of breast size in Asian women

    No full text
    Abstract Breast size as a risk factor of breast cancer has been studied extensively with inconclusive results. Here we examined the associations between breast size and breast cancer risk factors in 24,353 Asian women aged 50 to 64 years old enrolled in a nationwide mammography screening project conducted between October 1994 and February 1997. Information on demographic and reproductive factors was obtained via a questionnaire. Breast size was ascertained as bust line measured at study recruitment and total breast area measured from a mammogram. The average bust line and total breast area was 91.2 cm and 102.3 cm2, respectively. The two breast measurements were moderately correlated (Spearman correlation coefficient = 0.65). Age, BMI, marital and working status were independently associated with bust line and total breast area. In the multivariable analyses, the most pronounced effects were observed for BMI (24.2 cm difference in bust line and 39.4 cm2 in breast area comparing women with BMI ≥30 kg/m2 to BMI <20 kg/m2). Ethnicity was a positive predictor for total breast area, but not bust line
    corecore