28 research outputs found

    Managing hyperlipidaemia in patients with COVID-19 and during its pandemic: An expert panel position statement from HEART UK

    Get PDF
    The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes Coronavirus Disease 2019 (COVID-19) has resulted in a pandemic. SARS-CoV-2 is highly contagious and its severity highly variable. The fatality rate is unpredictable but is amplified by several factors including advancing age, atherosclerotic cardiovascular disease, diabetes mellitus, hypertension and obesity. A large proportion of patients with these conditions are treated with lipid lowering medication and questions regarding the safety of continuing lipid-lowering medication in patients infected with COVID-19 have arisen. Some have suggested they may exacerbate their condition. It is important to consider known interactions with lipid-lowering agents and with specific therapies for COVID-19. This statement aims to collate current evidence surrounding the safety of lipid-lowering medications in patients who have COVID-19. We offer a consensus view based on current knowledge and we rated the strength and level of evidence for these recommendations. Pubmed, Google scholar and Web of Science were searched extensively for articles using search terms: SARS-CoV-2, COVID-19, coronavirus, Lipids, Statin, Fibrates, Ezetimibe, PCSK9 monoclonal antibodies, nicotinic acid, bile acid sequestrants, nutraceuticals, red yeast rice, Omega-3-Fatty acids, Lomitapide, hypercholesterolaemia, dyslipidaemia and Volanesorsen. There is no evidence currently that lipid lowering therapy is unsafe in patients with COVID-19 infection. Lipid-lowering therapy should not be interrupted because of the pandemic or in patients at increased risk of COVID-19 infection. In patients with confirmed COVID-19, care should be taken to avoid drug interactions, between lipid-lowering medications and drugs that may be used to treat COVID-19, especially in patients with abnormalities in liver function tests

    Liver fat measured by MR spectroscopy:Estimate of imprecision and relationship with serum glycerol, caeruloplasmin and non-esterified fatty acids

    No full text
    Magnetic resonance spectroscopy (MRS) is a non-invasive method for quantitative estimation of liver fat. Knowledge of its imprecision, which comprises biological variability and measurement error, is required to design therapeutic trials with measurement of change. The role of adipocyte lipolysis in ectopic fat accumulation remains unclear. We examined the relationship between liver fat content and indices of lipolysis, and determine whether lipolysis reflects insulin resistance or metabolic liver disease. Imprecision of measurement of liver fat was estimated from duplicate measurements by MRS at one month intervals. Patients provided fasting blood samples and we examined the correlation of liver fat with indices of insulin resistance, lipolysis and metabolic liver disease using Kendall Tau statistics. The coefficient of variation of liver fat content was 14.8%. Liver fat was positively related to serum insulin (T = 0.48, p = 0.042), homeostasis model assessment (HOMA)-B% (T = −0.48, p = 0.042), and body mass index (BMI) (T = 0.59, p = 0.012); and inversely related to HOMA-S% (T = −0.48, p = 0.042), serum glycerol (T = −0.59, p = 0.014), and serum caeruloplasmin (T = 0.055, p = 0.047). Our estimate of total variability in liver fat content (14.8%) is nearly twice that of the reported procedural variability (8.5%). We found that liver fat content was significantly inversely related to serum glycerol but not to non-esterified fatty acids (NEFA), suggesting progressive suppression of lipolysis. Reduction of caeruloplasmin with increasing liver fat may be a consequence or a cause of hepatic steatosis
    corecore