52 research outputs found
A case of Hemiplegia Vegetativa Alterna, Paroxysmal Sympathetic Hyperactivity and Ogilvie's Syndrome: the role of central sympathetic pathways in their pathophysiology
Meeting Theme: Degenerative Lumbar SpineOral-Poster Presentation 1Hemiplegia vegetativa alterna (HVA) is the clinical syndrome of contralateral hemiparesis, hemisensory loss, hemihyperhydrosis and ipsilateral Horner’s syndrome1,2. The term vegetativa alterna denotes that a single brainstem lesion manifests with ipsilateral and contralateral, i.e. crossed, signs of autonomic (“vegetative”) sympathetic nervous system dysfunction. Fewer than five cases have been reported and most were a result of stroke involving the occlusion of posterior cerebral artery (PCA) perforators that supply the anterolateral mesencephalon.
We describe a 46 year old male who suffered from aneurysmal subarachnoid hemorrhage and exhibited HVA as …published_or_final_versio
Local Difference Measures between Complex Networks for Dynamical System Model Evaluation
Acknowledgments We thank Reik V. Donner for inspiring suggestions that initialized the work presented herein. Jan H. Feldhoff is credited for providing us with the STARS simulation data and for his contributions to fruitful discussions. Comments by the anonymous reviewers are gratefully acknowledged as they led to substantial improvements of the manuscript.Peer reviewedPublisher PD
“Charity Begins at Home”: Informal Caring Barriers to Formal Volunteering Among Older People
Formal volunteering is an important economic and social activity. In many countries, prevalence of volunteering is decreasing overall, including among older people who constitute a major volunteering resource. This qualitative study explored reasons for non-volunteering among seniors, with a focus on those who attribute their non-volunteering to their existing helping commitments. Forty-nine Australian interviewees aged 60 + years described a range of social, psychological, and temporal factors that resulted in their prioritization of informal rather than formal volunteering activities. These factors are mapped onto a theoretical framework matrix, with social identity and social capital theories appearing to possess the most explanatory power. The findings suggest that programs designed to encourage formal volunteering among older people need to be implemented in a manner that recognizes that members of this group can hold many other responsibilities that limit their ability to participate, especially those assisting in the care of multiple generations
The complete mitochondrial genome of Flustra foliacea (Ectoprocta, Cheilostomata) - compositional bias affects phylogenetic analyses of lophotrochozoan relationships
<p>Abstract</p> <p>Background</p> <p>The phylogenetic relationships of the lophophorate lineages, ectoprocts, brachiopods and phoronids, within Lophotrochozoa are still controversial. We sequenced an additional mitochondrial genome of the most species-rich lophophorate lineage, the ectoprocts. Although it is known that there are large differences in the nucleotide composition of mitochondrial sequences of different lineages as well as in the amino acid composition of the encoded proteins, this bias is often not considered in phylogenetic analyses. We applied several approaches for reducing compositional bias and saturation in the phylogenetic analyses of the mitochondrial sequences.</p> <p>Results</p> <p>The complete mitochondrial genome (16,089 bp) of <it>Flustra foliacea </it>(Ectoprocta, Gymnolaemata, Cheilostomata) was sequenced. All protein-encoding, rRNA and tRNA genes are transcribed from the same strand. <it>Flustra </it>shares long intergenic sequences with the cheilostomate ectoproct <it>Bugula</it>, which might be a synapomorphy of these taxa. Further synapomorphies might be the loss of the DHU arm of the tRNA L(UUR), the loss of the DHU arm of the tRNA S(UCN) and the unique anticodon sequence GAG of the tRNA L(CUN). The gene order of the mitochondrial genome of <it>Flustra </it>differs strongly from that of the other known ectoprocts. Phylogenetic analyses of mitochondrial nucleotide and amino acid data sets show that the lophophorate lineages are more closely related to trochozoan phyla than to deuterostomes or ecdysozoans confirming the Lophotrochozoa hypothesis. Furthermore, they support the monophyly of Cheilostomata and Ectoprocta. However, the relationships of the lophophorate lineages within Lophotrochozoa differ strongly depending on the data set and the used method. Different approaches for reducing heterogeneity in nucleotide and amino acid data sets and saturation did not result in a more robust resolution of lophotrochozoan relationships.</p> <p>Conclusion</p> <p>The contradictory and usually weakly supported phylogenetic reconstructions of the relationships among lophotrochozoan phyla based on mitochondrial sequences indicate that these alone do not contain enough information for a robust resolution of the relations of the lophotrochozoan phyla. The mitochondrial gene order is also not useful for inferring their phylogenetic relationships, because it is highly variable in ectoprocts, brachiopods and some other lophotrochozoan phyla. However, our study revealed several rare genomic changes like the evolution of long intergenic sequences and changes in the structure of tRNAs, which may be helpful for reconstructing ectoproct phylogeny.</p
Molecular Variation at a Candidate Gene Implicated in the Regulation of Fire Ant Social Behavior
The fire ant Solenopsis invicta and its close relatives display an important social polymorphism involving differences in colony queen number. Colonies are headed by either a single reproductive queen (monogyne form) or multiple queens (polygyne form). This variation in social organization is associated with variation at the gene Gp-9, with monogyne colonies harboring only B-like allelic variants and polygyne colonies always containing b-like variants as well. We describe naturally occurring variation at Gp-9 in fire ants based on 185 full-length sequences, 136 of which were obtained from S. invicta collected over much of its native range. While there is little overall differentiation between most of the numerous alleles observed, a surprising amount is found in the coding regions of the gene, with such substitutions usually causing amino acid replacements. This elevated coding-region variation may result from a lack of negative selection acting to constrain amino acid replacements over much of the protein, different mutation rates or biases in coding and non-coding sequences, negative selection acting with greater strength on non-coding than coding regions, and/or positive selection acting on the protein. Formal selection analyses provide evidence that the latter force played an important role in the basal b-like lineages coincident with the emergence of polygyny. While our data set reveals considerable paraphyly and polyphyly of S. invicta sequences with respect to those of other fire ant species, the b-like alleles of the socially polymorphic species are monophyletic. An expanded analysis of colonies containing alleles of this clade confirmed the invariant link between their presence and expression of polygyny. Finally, our discovery of several unique alleles bearing various combinations of b-like and B-like codons allows us to conclude that no single b-like residue is completely predictive of polygyne behavior and, thus, potentially causally involved in its expression. Rather, all three typical b-like residues appear to be necessary
Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å
Photosystem II is the site of photosynthetic water oxidation and contains 20 subunits with a total molecular mass of 350 kDa. The structure of photosystem II has been reported at resolutions from 3.8 to 2.9 angstrom. These resolutions have provided much information on the arrangement of protein subunits and cofactors but are insufficient to reveal the detailed structure of the catalytic centre of water splitting. Here we report the crystal structure of photosystem II at a resolution of 1.9 angstrom. From our electron density map, we located all of the metal atoms of the Mn(4)CaO(5) cluster, together with all of their ligands. We found that five oxygen atoms served as oxo bridges linking the five metal atoms, and that four water molecules were bound to the Mn(4)CaO(5) cluster; some of them may therefore serve as substrates for dioxygen formation. We identified more than 1,300 water molecules in each photosystem II monomer. Some of them formed extensive hydrogen-bonding networks that may serve as channels for protons, water or oxygen molecules. The determination of the high-resolution structure of photosystem II will allow us to analyse and understand its functions in great detail
Unravelling higher order chromatin organisation through statistical analysis
Recent technological advances underpinned by high throughput sequencing have
given new insights into the three-dimensional structure of mammalian genomes.
Chromatin conformation assays have been the critical development in this area,
particularly the Hi-C method which ascertains genome-wide patterns of intra and
inter-chromosomal contacts. However many open questions remain concerning the
functional relevance of such higher order structure, the extent to which it varies, and
how it relates to other features of the genomic and epigenomic landscape.
Current knowledge of nuclear architecture describes a hierarchical organisation
ranging from small loops between individual loci, to megabase-sized self-interacting
topological domains (TADs), encompassed within large multimegabase chromosome
compartments. In parallel with the discovery of these strata, the ENCODE project has
generated vast amounts of data through ChIP-seq, RNA-seq and other assays applied
to a wide variety of cell types, forming a comprehensive bioinformatics resource.
In this work we combine Hi-C datasets describing physical genomic contacts with
a large and diverse array of chromatin features derived at a much finer scale in the
same mammalian cell types. These features include levels of bound transcription
factors, histone modifications and expression data. These data are then integrated
in a statistically rigorous way, through a predictive modelling framework from the
machine learning field. These studies were extended, within a collaborative project, to
encompass a dataset of matched Hi-C and expression data collected over a murine
neural differentiation timecourse.
We compare higher order chromatin organisation across a variety of human cell
types and find pervasive conservation of chromatin organisation at multiple scales.
We also identify structurally variable regions between cell types, that are rich in active
enhancers and contain loci of known cell-type specific function. We show that broad
aspects of higher order chromatin organisation, such as nuclear compartment domains,
can be accurately predicted in a variety of human cell types, using models based upon
underlying chromatin features. We dissect these quantitative models and find them
to be generalisable to novel cell types, presumably reflecting fundamental biological
rules linking compartments with key activating and repressive signals. These models
describe the strong interconnectedness between locus-level patterns of local histone
modifications and bound factors, on the order of hundreds or thousands of basepairs,
with much broader compartmentalisation of large, multi-megabase chromosomal
regions.
Finally, boundary regions are investigated in terms of chromatin features and
co-localisation with other known nuclear structures, such as association with the
nuclear lamina. We find boundary complexity to vary between cell types and link
TAD aggregations to previously described lamina-associated domains, as well as
exploring the concept of meta-boundaries that span multiple levels of organisation.
Together these analyses lend quantitative evidence to a model of higher order genome
organisation that is largely stable between cell types, but can selectively vary locally,
based on the activation or repression of key loci
- …