781 research outputs found

    Star product formula of theta functions

    Full text link
    As a noncommutative generalization of the addition formula of theta functions, we construct a class of theta functions which are closed with respect to the Moyal star product of a fixed noncommutative parameter. These theta functions can be regarded as bases of the space of holomorphic homomorphisms between holomorphic line bundles over noncommutative complex tori.Comment: 12 page

    Recurrent dynamical symmetry breaking and restoration by Wilson lines at finite densities on a torus

    Full text link
    In this paper we derive the general expression of a one-loop effective potential of the nonintegrable phases of Wilson lines for an SU(N) gauge theory with a massless adjoint fermion defined on the spactime manifold R1,d−3×T2R^{1,d-3}\times T^2 at finite temperature and fermion density. The Phase structure of the vacuum is presented for the case with d=4d=4 and N=2 at zero temperature. It is found that gauge symmetry is broken and restored alternately as the fermion density increases, a feature not found in the Higgs mechanism. It is the manifestation of the quantum effects of the nonintegrable phases.Comment: 17 pages, 2 figure

    Finding Faint Intermediate-mass Black Holes in the Radio Band

    Full text link
    We discuss the prospects for detecting faint intermediate-mass black holes, such as those predicted to exist in the cores of globular clusters and dwarf spheroidal galaxies. We briefly summarize the difficulties of stellar dynamical searches, then show that recently discovered relations between black hole mass, X-ray luminosity and radio luminosity imply that in most cases, these black holes should be more easily detected in the radio than in the X-rays. Finally, we show upper limits from some radio observations of globular clusters, and discuss the possibility that the radio source in the core of the Ursa Minor dwarf spheroidal galaxy might be a ∼10,000−100,000M⊙\sim 10,000-100,000 M_\odot black hole.Comment: 10 pages, no figures, to appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    Spectrum of the Vortex Bound States of the Dirac and Schrodinger Hamiltonian in the presence of Superconducting Gaps

    Full text link
    We investigate the vortex bound states both Schrodinger and Dirac Hamiltonian with the s-wave superconducting pairing gap by solving the mean-field Bogoliubov-de-Gennes equations. The exact vortex bound states spectrum is numerically determined by the integration method, and also accompanied by the quasi-classical analysis. It is found that the bound state energies is proportional to the vortex angular momentum when the chemical potential is large enough. By applying the external magnetic field, the vortex bound state energies of the Dirac Hamiltonian are almost unchanged; whereas the energy shift of the Schrodinger Hamiltonian is proportional to the magnetic field. These qualitative differences may serve as an indirect evidence of the existence of Majorana fermions in which the zero mode exists in the case of the Dirac Hamiltonian only.Comment: 8 pages, 9 figure

    Ferromagnetic phase transition and Bose-Einstein condensation in spinor Bose gases

    Full text link
    Phase transitions in spinor Bose gases with ferromagnetic (FM) couplings are studied via mean-field theory. We show that an infinitesimal value of the coupling can induce a FM phase transition at a finite temperature always above the critical temperature of Bose-Einstein condensation. This contrasts sharply with the case of Fermi gases, in which the Stoner coupling IsI_s can not lead to a FM phase transition unless it is larger than a threshold value I0I_0. The FM coupling also increases the critical temperatures of both the ferromagnetic transition and the Bose-Einstein condensation.Comment: 4 pages, 4 figure

    The Electric Dipole Moment of the Nucleons in Holographic QCD

    Full text link
    We introduce the strong CP-violation in the framework of AdS/QCD model and calculate the electric dipole moments of nucleons as well as the CP-violating pion-nucleon coupling. Our holographic estimate of the electric dipole moments gives for the neutron d_n=1.08 X 10^{-16} theta (e cm), which is comparable with previous estimates. We also predict that the electric dipole moment of the proton should be precisely the minus of the neutron electric dipole moment, thus leading to a new sum rule on the electric dipole moments of baryons.Comment: 22 pages, no figures. v2: A reference and an acknowledgment added. v3: One more reference, to appear in JHE

    Entangled quantum tunneling of two-component Bose-Einstein condensates

    Full text link
    We examine the quantum tunneling process in Bose condensates of two interacting species trapped in a double well configuration. We discover the condition under which particles of different species can tunnel as pairs through the potential barrier between two wells in opposition directions. This novel form of tunneling is due to the interspecies interaction that eliminates the self- trapping effect. The correlated motion of tunneling atoms leads to the generation of quantum entanglement between two macroscopically coherent systems.Comment: 4 pages, 3 figure

    Quantum Computing with Atomic Josephson Junction Arrays

    Full text link
    We present a quantum computing scheme with atomic Josephson junction arrays. The system consists of a small number of atoms with three internal states and trapped in a far-off resonant optical lattice. Raman lasers provide the "Josephson" tunneling, and the collision interaction between atoms represent the "capacitive" couplings between the modes. The qubit states are collective states of the atoms with opposite persistent currents. This system is closely analogous to the superconducting flux qubit. Single qubit quantum logic gates are performed by modulating the Raman couplings, while two-qubit gates result from a tunnel coupling between neighboring wells. Readout is achieved by tuning the Raman coupling adiabatically between the Josephson regime to the Rabi regime, followed by a detection of atoms in internal electronic states. Decoherence mechanisms are studied in detail promising a high ratio between the decoherence time and the gate operation time.Comment: 7 figure

    Reversed anisotropies and thermal contraction of FCC (110) surfaces

    Full text link
    The observed anisotropies of surface vibrations for unreconstructed FCC metal (110) surfaces are often reversed from the "common sense" expectation. The source of these reversals is investigated by performing ab initio density functional theory calculations to obtain the surface force constant tensors for Ag(110), Cu(110) and Al(110). The most striking result is a large enhancement in the coupling between the first and third layers of the relaxed surface, which strongly reduces the amplitude of out-of-plane vibrations of atoms in the first layer. This also provides a simple explanation for the thermal contraction of interlayer distances. Both the anisotropies and the thermal contraction arise primarily as a result of the bond topology, with all three (110) surfaces showing similar behavior.Comment: 13 pages, in revtex format, plus 1 postscript figur

    Active Galaxies in the UV

    Full text link
    In this article we present different aspects of AGN studies demonstrating the importance of the UV spectral range. Most important diagnostic lines for studying the general physical conditions as well as the metalicities in the central broad line region in AGN are emitted in the UV. The UV/FUV continuum in AGN excites not only the emission lines in the immediate surrounding but it is responsible for the ionization of the intergalactic medium in the early stages of the universe. Variability studies of the emission line profiles of AGN in the UV give us information on the structure and kinematics of the immediate surrounding of the central supermassive black hole as well as on its mass itself.Comment: 29 pages, 13 figures, Ap&SS in pres
    • …
    corecore