13 research outputs found

    From Your Preferences to Niche Tourism: A New ā€œTo-Doā€ List in Hong Kong

    Get PDF
    There are a lot of services and mobile applications that allow simplifying a search, proactively providing information about famous attractions and user feedback; but travelers may have difficulty in choosing based on their real needs. Smart tourism, under the rapid growth of Internet of Things and machine learning techniques is developed for enhancing travellersā€™ experience and satisfaction. In recent years, it is essential for most tourism industrialists to strengthen their competitive edge and to improve industrial sustainability through the adoption of smart tourism. In this chapter, the proposed model generates travel recommendations and related useful information to end users through an online platform, namely Niche-E-Travel (NET). This distinctive tourism solution aims to collect all the obscure attractions, to align them with visitorsā€™ interests, and to provide them with a new to-do list in Hong Kong. NET collects basic information from end users and uses the proposed travel analytic model with K-modes and K-means clustering methods to finish a clustering process, and provide some potential activity plans to fit the end userā€™s interests and requirements. Recommendations made for each user are supported by collaborative filtering to compare different usersā€™ personal interests

    Accelerating L 1 -penalized expectation maximization algorithm for latent variable selection in multidimensional two-parameter logistic models

    Get PDF
    Ā© 2023 Shang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/One of the main concerns in multidimensional item response theory (MIRT) is to detect the relationship between observed items and latent traits, which is typically addressed by the exploratory analysis and factor rotation techniques. Recently, an EM-based L1-penalized log-likelihood method (EML1) is proposed as a vital alternative to factor rotation. Based on the observed test response data, EML1 can yield a sparse and interpretable estimate of the loading matrix. However, EML1 suffers from high computational burden. In this paper, we consider the coordinate descent algorithm to optimize a new weighted log-likelihood, and consequently propose an improved EML1 (IEML1) which is more than 30 times faster than EML1. The performance of IEML1 is evaluated through simulation studies and an application on a real data set related to the Eysenck Personality Questionnaire is used to demonstrate our methodologies.Peer reviewe

    Blockchain-driven IoT for food traceability with an integrated consensus mechanism

    Get PDF
    Food traceability has been one of the emerging blockchain applications in recent years, for improving the areas of anti-counterfeiting and quality assurance. Existing food traceability systems do not guarantee a high level of system reliability, scalability, and information accuracy. Moreover, the traceability process is time-consuming and complicated in modern supply chain networks. To alleviate these concerns, blockchain technology is promising to create a new ontology for supply chain traceability. However, most consensus mechanisms and data flow in blockchain are developed for cryptocurrency, not for supply chain traceability; hence, simply applying blockchain technology to food traceability is impractical. In this paper, a blockchain-IoT-based food traceability system (BIFTS) is proposed to integrate the novel deployment of blockchain, IoT technology, and fuzzy logic into a total traceability shelf life management system for managing perishable food. To address the needs for food traceability, lightweight and vaporized characteristics are deployed in the blockchain, while an integrated consensus mechanism that considers shipment transit time, stakeholder assessment, and shipment volume is developed. The data flow of blockchain is then aligned to the deployment of IoT technologies according to the level of traceable resource units. Subsequently, the decision support can be established in the food supply chain by using reliable and accurate data for shelf life adjustment, and by using fuzzy logic for quality decay evaluation

    An Intelligent Clinical Decision Support System for Assessing the Needs of a Long-Term Care Plan

    Get PDF
    With the global aging population, providing effective long-term care has been promoted and emphasized for reducing the hospitalizations of the elderly and the care burden to hospitals and governments. Under the scheme of Long-term Care Project 2.0 (LTCP 2.0), initiated in Taiwan, two types of long-term care services, i.e., institutional care and home care, are provided for the elderly with chronic diseases and disabilities, according to their personality, living environment and health situation. Due to the increasing emphasis on the quality of life in recent years, the elderly expect long-term care service providers (LCSP) to provide the best quality of care (QoC). Such healthcare must be safe, effective, timely, efficiently, diversified and up-to-date. Instead of supporting basic activities in daily living, LCSPs have changed their goals to formulate elderly-centered care plans in an accurate, time-efficient and cost-effective manner. In order to ensure the quality of the care services, an intelligent clinical decision support system (ICDSS) is proposed for care managers to improve their efficiency and effectiveness in assessing the long-term care needs of the elderly. In the ICDSS, artificial intelligence (AI) techniques are adopted to distinguish and formulate personalized long-term care plans by retrieving relevant knowledge from past similar records

    ck-FARM: An R package to discover big data associations for business intelligence

    No full text
    Fuzzy association rule mining (FARM) is a well-known data mining algorithm to identify frequently occurring patterns from datasets, in which the fuzzy set theory is applied to consider linguistic variables for building an explainable reasoning system. In this study, an improved algorithm, namely ck-FARM, is proposed as an R package. Differing from the typical FARM mechanism, the statistical significance of the parameter correspondence is examined, while the fuzzy membership functions are autonomously built and adapted to the given datasets. Consequently, the adaptability and reliability of building fuzzy association rules can be enhanced

    Analysis of the Spread of COVID-19 in the USA with a Spatio-Temporal Multivariate Time Series Model

    No full text
    With the rapid spread of the pandemic due to the coronavirus disease 2019 (COVID-19), the virus has already led to considerable mortality and morbidity worldwide, as well as having a severe impact on economic development. In this article, we analyze the state-level correlation between COVID-19 risk and weather/climate factors in the USA. For this purpose, we consider a spatio-temporal multivariate time series model under a hierarchical framework, which is especially suitable for envisioning the virus transmission tendency across a geographic area over time. Briefly, our model decomposes the COVID-19 risk into: (i) an autoregressive component that describes the within-state COVID-19 risk effect; (ii) a spatiotemporal component that describes the across-state COVID-19 risk effect; (iii) an exogenous component that includes other factors (e.g., weather/climate) that could envision future epidemic development risk; and (iv) an endemic component that captures the function of time and other predictors mainly for individual states. Our results indicate that maximum temperature, minimum temperature, humidity, the percentage of cloud coverage, and the columnar density of total atmospheric ozone have a strong association with the COVID-19 pandemic in many states. In particular, the maximum temperature, minimum temperature, and the columnar density of total atmospheric ozone demonstrate statistically significant associations with the tendency of COVID-19 spreading in almost all states. Furthermore, our results from transmission tendency analysis suggest that the community-level transmission has been relatively mitigated in the USA, and the daily confirmed cases within a state are predominated by the earlier daily confirmed cases within that state compared to other factors, which implies that states such as Texas, California, and Florida with a large number of confirmed cases still need strategies like stay-at-home orders to prevent another outbreak

    Integrated Smart Warehouse and Manufacturing Management with Demand Forecasting in Small-Scale Cyclical Industries

    No full text
    In the context of the global economic slowdown, demand forecasting, and inventory and production management have long been important topics to the industries. With the support of smart warehouses, big data analytics, and optimization algorithms, enterprises can achieve economies of scale, and balance supply and demand. Smart warehouse and manufacturing management is considered the culmination of recently advanced technologies. It is important to enhance the scalability and extendibility of the industry. Despite many researchers having developed frameworks for smart warehouse and manufacturing management for various fields, most of these models are mainly focused on the logistics of the product and are not generalized to tackle the specific manufacturing problem facing in the cyclical industry. Indeed, the cyclical industry has a key problem: the big risk which high sensitivity poses to the business cycle and economic recession, which is difficult to foresee. Despite many inventory optimization approaches being proposed to optimize the inventory level in the warehouse and facilitate production management, the demand forecasting technique is seldom focused on the cyclic industry. On the other hand, management approaches are usually based on the complex logistics process instead of integrating the inventory level of the stock, which is very crucial to composing smart warehouses and manufacturing. This research study proposed a digital twin framework by integrating the smart warehouse and manufacturing with the roulette genetic algorithm for demand forecasting in the cyclical industry. We also demonstrate how this algorithm is practically implemented for forecasting the demand, sustaining manufacturing optimization, and achieving inventory optimization. We adopted a small-scale textile company case study to demonstrate the proposed digital framework in the warehouse and demonstrate the results of demand forecasting and inventory optimization. Various scenarios were conducted to simulate the results for the digital twin. The proposed digital twin framework and results help manufacturers and logistics companies to improve inventory management. This study has important theoretical and practical significance for the management of the cyclical industry

    A Computer Vision-Based Roadside Occupation Surveillance System for Intelligent Transport in Smart Cities

    Get PDF
    In digital and green city initiatives, smart mobility is a key aspect of developing smart cities and it is important for built-up areas worldwide. Double-parking and busy roadside activities such as frequent loading and unloading of trucks, have a negative impact on traffic situations, especially in cities with high transportation density. Hence, a real-time internet of things (IoT)-based system for surveillance of roadside loading and unloading bays is needed. In this paper, a fully integrated solution is developed by equipping high-definition smart cameras with wireless communication for traffic surveillance. Henceforth, this system is referred to as a computer vision-based roadside occupation surveillance system (CVROSS). Through a vision-based network, real-time roadside traffic images, such as images of loading or unloading activities, are captured automatically. By making use of the collected data, decision support on roadside occupancy and vacancy can be evaluated by means of fuzzy logic and visualized for users, thus enhancing the transparency of roadside activities. The CVROSS was designed and tested in Hong Kong to validate the accuracy of parking-gap estimation and system performance, aiming at facilitating traffic and fleet management for smart mobility

    Accelerating L1-penalized expectation maximization algorithm for latent variable selection in multidimensional two-parameter logistic models.

    Get PDF
    One of the main concerns in multidimensional item response theory (MIRT) is to detect the relationship between observed items and latent traits, which is typically addressed by the exploratory analysis and factor rotation techniques. Recently, an EM-based L1-penalized log-likelihood method (EML1) is proposed as a vital alternative to factor rotation. Based on the observed test response data, EML1 can yield a sparse and interpretable estimate of the loading matrix. However, EML1 suffers from high computational burden. In this paper, we consider the coordinate descent algorithm to optimize a new weighted log-likelihood, and consequently propose an improved EML1 (IEML1) which is more than 30 times faster than EML1. The performance of IEML1 is evaluated through simulation studies and an application on a real data set related to the Eysenck Personality Questionnaire is used to demonstrate our methodologies
    corecore