2,880 research outputs found

    A New H I Survey of Active Galaxies

    Full text link
    We have conducted a new Arecibo survey for H I emission for 113 galaxies with broad-line (type 1) active galactic nuclei (AGNs) out to recession velocities as high as 35,000 km/s. The primary aim of the study is to obtain sensitive H I spectra for a well-defined, uniformly selected sample of active galaxies that have estimates of their black hole masses in order to investigate correlations between H I properties and the characteristics of the AGNs. H I emission was detected in 66 out of the 101 (65%) objects with spectra uncorrupted by radio frequency interference, among which 45 (68%) have line profiles with adequate signal-to-noise ratio and sufficiently reliable inclination corrections to yield robust deprojected rotational velocities. This paper presents the basic survey products, including an atlas of H I spectra, measurements of H I flux, line width, profile asymmetry, optical images, optical spectroscopic parameters, as well as a summary of a number of derived properties pertaining to the host galaxies. To enlarge our primary sample, we also assemble all previously published H I measurements of type 1 AGNs for which can can estimate black hole masses, which total an additional 53 objects. The final comprehensive compilation of 154 broad-line active galaxies, by far the largest sample ever studied, forms the basis of our companion paper, which uses the H I database to explore a number of properties of the AGN host galaxies.Comment: To appear in ApJS; 31 pages. Preprint will full-resolution figures can be downloaded from http://www.ociw.edu/~lho/preprints/ms1.pd

    The Scattering Theory of Oscillator Defects in an Optical Fiber

    Full text link
    We examine harmonic oscillator defects coupled to a photon field in the environs of an optical fiber. Using techniques borrowed or extended from the theory of two dimensional quantum fields with boundaries and defects, we are able to compute exactly a number of interesting quantities. We calculate the scattering S-matrices (i.e. the reflection and transmission amplitudes) of the photons off a single defect. We determine using techniques derived from thermodynamic Bethe ansatz (TBA) the thermodynamic potentials of the interacting photon-defect system. And we compute several correlators of physical interest. We find the photon occupancy at finite temperature, the spontaneous emission spectrum from the decay of an excited state, and the correlation functions of the defect degrees of freedom. In an extension of the single defect theory, we find the photonic band structure that arises from a periodic array of harmonic oscillators. In another extension, we examine a continuous array of defects and exactly derive its dispersion relation. With some differences, the spectrum is similar to that found for EM wave propagation in covalent crystals. We then add to this continuum theory isolated defects, so as to obtain a more realistic model of defects embedded in a frequency dependent dielectric medium. We do this both with a single isolated defect and with an array of isolated defects, and so compute how the S-matrices and the band structure change in a dynamic medium.Comment: 32 pages, TeX with harvmac macros, three postscript figure

    The SAMI Galaxy Survey: Unveiling the nature of kinematically offset active galactic nuclei

    Full text link
    We have observed two kinematically offset active galactic nuclei (AGN), whose ionised gas is at a different line-of-sight velocity to their host galaxies, with the SAMI integral field spectrograph (IFS). One of the galaxies shows gas kinematics very different to the stellar kinematics, indicating a recent merger or accretion event. We demonstrate that the star formation associated with this event was triggered within the last 100 Myr. The other galaxy shows simple disc rotation in both gas and stellar kinematics, aligned with each other, but in the central region has signatures of an outflow driven by the AGN. Other than the outflow, neither galaxy shows any discontinuity in the ionised gas kinematics at the galaxy's centre. We conclude that in these two cases there is no direct evidence of the AGN being in a supermassive black hole binary system. Our study demonstrates that selecting kinematically offset AGN from single-fibre spectroscopy provides, by definition, samples of kinematically peculiar objects, but IFS or other data are required to determine their true nature.Comment: MNRAS accepted. 14 pages, 11 figure

    The effect of adsorbed volatile organic compounds on an ultrathin water film measurement

    Get PDF
    Using surface plasmon resonance imaging (SPRi), we have recently shown for the first time the existence of a monolayer water film between droplets during dropwise condensation. This study examines the effect of adsorbed volatile organic compounds (VOCs) on the ultrathin film measurement using SPRi. Further, the work presents the proper surface-treatment process that enables measurements of the ultrathin water layer during high-speed imaging of dropwise condensation at 3000 frame per second. In this study, two methods were applied for cleaning the surface (gold-coated glass)-(1) standard cleaning procedure (SCP) using acetone, isopropyl alcohol, and deionized water and (2) SCP followed by air plasma cleaning. This work discusses the effect of the cleaning procedures on surface roughness, contact angle, and surface chemistry using atomic force microscopy, optical microscopy, and an X-ray photoelectron spectroscope meter. The results showed that SCP before the SPRi is a proper surface-treatment method. The effect of adsorbed VOCs during dropwise condensation on a surface treated with SCP was measured to be 0.0025 (reflectivity unit), which was 70% smaller than the reflectance associated with a monolayer water film. The results of this work confirm a monolayer water film observation during the dropwise condensation, which has been reported before

    The SAMI Galaxy Survey: Gas Streaming and Dynamical M/L in Rotationally Supported Systems

    Get PDF
    Line-of-sight velocities of gas and stars can constrain dark matter (DM) within rotationally supported galaxies if they trace circular orbits extensively. Photometric asymmetries may signify non-circular motions, requiring spectra with dense spatial coverage. Our integral-field spectroscopy of 178 galaxies spanned the mass range of the SAMI Galaxy Survey. We derived circular speed curves (CSCs) of gas and stars from non-parametric Diskfit fits out to r2rer\sim2r_e. For 12/14 with measured H I profiles, ionized gas and H I maximum velocities agreed. We fitted mass-follows-light models to 163 galaxies by approximating the radial starlight profile as nested, very flattened mass homeoids viewed as a S\'ersic form. Fitting broad-band SEDs to SDSS images gave median stellar mass/light 1.7 assuming a Kroupa IMF vs. 2.6 dynamically. Two-thirds of the dynamical mass/light measures were consistent with star+remnant IMFs. One-fifth required upscaled starlight to fit, hence comparable mass of unobserved baryons and/or DM distributed similarly across the SAMI aperture that came to dominate motions as the starlight CSC declined rapidly. The rest had mass distributed differently from starlight. Subtracting fits of S\'ersic profiles to 13 VIKING Z-band images revealed residual weak bars. Near the bar PA, we assessed m = 2 streaming velocities, and found deviations usually <30 km/s from the CSC; three showed no deviation. Thus, asymmetries rarely influenced our CSCs despite co-located shock-indicating, emission-line flux ratios in more than 2/3.Comment: 21 pages, 15 figures. Accepted to MNRA

    Structure and dynamics of Rh surfaces

    Full text link
    Lattice relaxations, surface phonon spectra, surface energies, and work functions are calculated for Rh(100) and Rh(110) surfaces using density-functional theory and the full-potential linearized augmented plane wave method. Both, the local-density approximation and the generalized gradient approximation to the exchange-correlation functional are considered. The force constants are obtained from the directly calculated atomic forces, and the temperature dependence of the surface relaxation is evaluated by minimizing the free energy of the system. The anharmonicity of the atomic vibrations is taken into account within the quasiharmonic approximation. The importance of contributions from different phonons to the surface relaxation is analyzed.Comment: 9 pages, 7 figures, scheduled to appear in Phys. Rev. B, Feb. 15 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Radiating dipoles in photonic crystals

    Get PDF
    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.Comment: Phys. Rev. E, accepte
    corecore