2 research outputs found

    p27Kip1 signaling : transcriptional and post-translational regulation

    No full text
    p27Kip1 is an inhibitor of a broad spectrum of cyclin-dependent kinases (CDKs), and the loss of a single p27Kip1 allele is thereby sufficient to increase tumor incidence via CDK-mediated cell cycle entry. As such, down-regulation of p27Kip1 protein levels, in particular nuclear expressed p27Kip1, is implicated in both disease progression and poor prognosis in a variety of cancers. p27Kip1 expression is positively regulated by the transcription factor MENIN, and inhibited by oncogenic transcription factors MYC and PIM. How-ever, regulation of p27Kip1 protein expression and function is predominantly through post-translational modifications that alter both the cellular localization and the extent of E3 ubiquitin ligase-mediated degradation. Phosphorylation of p27Kip1 at Thr187 and Ser10 is a prerequisite for its degradation via the E3 ubiquitin ligases SKP2 (nuclear) and KPC (cytoplasmic), respectively. Additionally, Ser10 phosphorylated p27Kip1 is predominantly localized in the cytoplasm due to the nuclear export protein CRM1. Another E3 ubiquitin ligase, PIRH2, degrades p27Kip1 in both the cytoplasm and nucleus independent of phosphorylation state. As such, inhibition of cell cycle entry and progression in a variety of cancers may be achieved with therapies designed to correct p27Kip1 localization and/or block its degradation

    The histone chaperone complex FACT promotes proliferative switch of G0 cancer cells

    No full text
    Cancer cell repopulation through cell cycle re‐entry by quiescent (G0) cell is thought to be an important mechanism behind treatment failure and cancer recurrence. Facilitates Chromatin Transcription (FACT) is involved in DNA repair, replication and transcription by eviction of histones or loosening their contact with DNA. While FACT expression is known to be high in a range of cancers, the biological significance of the aberrant increase is not clear. We found that in prostate and lung cancer cells FACT mRNA and protein levels were low at G0 compared to the proliferating state but replenished upon cell cycle re‐entry. Silencing of FACT with Dox‐inducible shRNA hindered cell cycle re‐entry by G0cancer cells, which could be rescued by ectopic expression of FACT. An increase in SKP2, c‐MYC and PIRH2 and a decrease in p27 protein levels seen upon cell cycle re‐entry were prevented or diminished when FACT was silenced. Further, using mVenus‐p27K− infected cancer cells to measure p27 degradation capacity, we confirm that inhibition of FACT at release from quiescence suppressed the p27 degradation capacity resulting in an increased mVenus‐p27K− signal. In conclusion, FACT plays an important role in promoting the transition from G0 to the proliferative state and can be a potential therapeutic target to prevent prostate and lung cancer from progression and recurrence
    corecore