46 research outputs found

    Structural studies aimed at improving the antigenicity of congopain.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.African animal trypanosomosis or nagana is a tsetse fly-transmitted disease, caused by Trypanosoma congolense, T. vivax and to a lesser extent T. brucei brucei. The disease causes major losses in revenue in many livestock-producing African countries. The available control methods, including chemotherapeutic drugs and insecticidal spraying, have become environmentally unacceptable. Antigenic variation displayed by the parasites has hindered vaccine development efforts. In this context, rather than focusing solely on the parasite itself, efforts in vaccine development have shifted towards targeting pathogenic factors released by the parasites during infection. Congopain, the major cysteine protease of T. congolense, has been shown to act as a pathogenic factor in the disease process. Analysis of the immune response of trypano-tolerant cattle revealed that these animals have the ability to control congopain activity in vivo. Therefore, congopain is an attractive vaccine candidate. To test the protective potential of congopain, immunisation studies had been conducted in cattle using the baculovirus-expressed catalytic domain of congopain (C2) in RWL, a saponin-based proprietary adjuvant from SmithKline-Beecham. Immunised animals were partially protected against a disease caused by an infection with T.congolense. Unfortunately, subsequent attempts to reproduce these results were disappointing. It was hypothesised that this failure could be due to the different expression system (P. pastoris) used to produce the antigen (C2), or the different adjuvant, ISA206 (Seppic), used, thus hinting towards an epitope presentation problem. Congopain had been shown to dimerise at physiological pH in vitro. Sera from trypano-tolerant cattle preferentially recognised the dimer conformation, advocating for protective epitopes to be dimer associated. For that reason, the present study aimed at improving the antigenicity of congopain through firstly, the elucidation of the protective epitopes associated with the dimer, secondly, the determination of the 3-D structure of the protease in order to map protective epitopes to later design mimotopes, and thirdly improve the delivery of congopain to the immune cells while maintaining the conformation of the protease by using a molecular adjuvant, BiP. A dimerisation model was proposed, identifying the amino acid residues forming the dimerisation motif of congopain. In the present study, particular amino acid residues located in the dimerisation motif were mutated by PCR-based site-directed mutagenesis to generate mutants with different dimerisation capabilities. The congopain mutants were expressed in yeast and their dimerisation capability was assessed by PhastGel® SDS-PAGE. The mutations altered both the electrophoretic mobility of the mutants and their enzymatic characteristics compared to wild-type congopain. This advocated for the involvement of these amino acid residues in the dimerisation process, although they seem not to be the only partakers. Wild-type C2 and mutant forms of C2 were heterologously expressed in P. pastoris and purified to crystallisation purity levels. Crystallisation of these proteins is currently underway, but the results are still unknown. While awaiting the crystallisation results, in silico homology modelling was employed to gain insight into the 3-D structure, using cruzipain crystal structure as a template. The modelled 3-D structure of congopain followed the common framework of cathepsin L-like cysteine proteases. Due to time constraints and awaiting the crystal-derived 3-D structure, the 3-D model of congopain was not exploited to design mimotopes with the potential to provide protection against the disease. As it was shown that protective epitopes are likely to be dimer-specific, maintaining the native conformation of congopain is essential for stimulating a protective immune response in animals. Chemically formulated adjuvants usually contain high salt concentration, at acidic or basic pH, thus might change the conformation of the protease. Adjuvants capable of efficiently delivering the antigen to immune cells while maintaining the conformation of the protease were sought. Proteins belonging to the HSP70 family are natural adjuvants in higher eukaryotes. A protein belonging to the HSP70 family was previously identified in T. congolense lysates and is homologous to mammalian BiP. Congopain was genetically fused with T. congolense BiP in order to improve antigen delivery and production of congopain activity-inhibiting antibodies. The chimeric proteins were successfully expressed in both bacteria and yeasts. The low yields of recombinantly expressed chimeras in yeast and problems associated with renaturation and purification of bacteria-expressed chimeras prevented immunisation studies in mice. However, the groundwork was laid for producing BiP-congopain chimeras for use in an anti-disease vaccine for African trypanosomosis

    Investigating the role of CD28 costimulation and IL-4/IL-13 responsive myeloid and lymphoid cells during helminth infections in mice

    Get PDF
    Includes abstract.Includes bibliographical references.The aim of this study was to evaluate the importance of CD28 in initiating protective Th2 immunity against both primary and secondary infections with N. brasiliensis. Our findings demonstrate that CD28 is required for initiation of protective Th2 immunity against primary infection with N. brasiliensis. Furthermore, the absence of CD28 impairs development of memory CD4⁺ T cell responses resulting in failure to clear adult N. brasiliensis worms during secondary infection. Failure to resolve infection was associated with reduced production of Th2 cytokines particularly IL-13 and IL-4, abrogated humoral immunity and failure to expand CXCR5⁺ TFH cells

    Elevated IP-10 at the Protein and Gene Level Associates With Pulmonary TB

    Get PDF
    There is an urgent need for accurate and sensitive diagnostic tools that can overcome the current challenge to distinguish individuals with latent tuberculosis infection (LTBI) from individuals with active tuberculosis (TB). Recent literature has suggested that a group of cytokines may serve as biomarkers of TB disease progression. Using a multiplex ELISA, we quantified 27 circulatory markers present within the unstimulated plasma of individuals in Durban, South Africa who were healthy (n=20), LTBI (n=13), or had active TB (n=30). RT-qPCR was performed to measure gene expression of the cytokines of interest, using RNA isolated from healthy (n=20), LTBI (n=20), or active TB (n=30). We found that at the protein level, IL-1RA, IL-6, and IP-10 were significantly more abundant in participants with active TB (p< 0.05) compared to those with LTBI individuals. IP-10 also showed the strongest association with active TB compared to healthy and LTBI at mRNA level. Our data shows that these proteins may serve as biomarkers of TB at both the protein and gene level

    Deletion of IL-4Rα signalling on B cells limits hyperresponsiveness depending on antigen-load.

    Get PDF
    B cells play an important role in allergies through secretion of IgE. Interleukin 4 50 receptor α (IL-4Rα) is key in allergic asthma and regulates type 2 cytokine production, IgE 51 secretion and airway hyperresponsiveness (AHR). IL-4 activation of B cells is essential for 52 class-switching and contributes to the induction of B effector 2 (Be2) cells. The role of Be2 53 cells and signalling via IL-4Rα in B cells is not clearly defined

    Inducible deletion of CD28 prior to secondary nippostrongylus brasiliensis infection impairs worm expulsion and recall of protective memory CD4 (+) T cell responses

    Get PDF
    IL-13 driven Th2 immunity is indispensable for host protection against infection with the gastrointestinal nematode Nippostronglus brasiliensis. Disruption of CD28 mediated costimulation impairs development of adequate Th2 immunity, showing an importance for CD28 during the initiation of an immune response against this pathogen. In this study, we used global CD28−/− mice and a recently established mouse model that allows for inducible deletion of the cd28 gene by oral administration of tamoxifen (CD28−/loxCre+/−+TM) to resolve the controversy surrounding the requirement of CD28 costimulation for recall of protective memory responses against pathogenic infections. Following primary infection with N. brasiliensis, CD28−/− mice had delayed expulsion of adult worms in the small intestine compared to wild-type C57BL/6 mice that cleared the infection by day 9 post-infection. Delayed expulsion was associated with reduced production of IL-13 and reduced serum levels of antigen specific IgG1 and total IgE. Interestingly, abrogation of CD28 costimulation in CD28−/loxCre+/− mice by oral administration of tamoxifen prior to secondary infection with N. brasiliensis resulted in impaired worm expulsion, similarly to infected CD28−/− mice. This was associated with reduced production of the Th2 cytokines IL-13 and IL-4, diminished serum titres of antigen specific IgG1 and total IgE and a reduced CXCR5+ TFH cell population. Furthermore, total number of CD4+ T cells and B220+ B cells secreting Th1 and Th2 cytokines were significantly reduced in CD28−/− mice and tamoxifen treated CD28−/loxCre+/− mice compared to C57BL/6 mice. Importantly, interfering with CD28 costimulatory signalling before re-infection impaired the recruitment and/or expansion of central and effector memory CD4+ T cells and follicular B cells to the draining lymph node of tamoxifen treated CD28−/loxCre+/− mice. Therefore, it can be concluded that CD28 costimulation is essential for conferring host protection during secondary N. brasiliensis infection

    Signaling C-type lectin receptors in antimycobacterial immunity.

    No full text
    Introduction The mammalian innate immune system is composed of phagocytes such as macrophages and dendritic cells that serve as the first line of defense against microbial infections. These cells express various pattern recognition receptors (PRRs) that recognize specific pathogen-associated molecular patterns (PAMPs) on the surface of or inside microorganisms [1]. PRRs such as Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and Nucleotide-binding Oligomerization Domain (NOD)-like receptors (NLRs) have been widely studied in antimicrobial immunity and homeostasis. These PRRs have also been implicated in antimycobacterial immunity, with CLRs recently receiving considerable attention. CLRs are a large family of proteins containing at least 1 carbohydrate-recognition domain (CRD) that in most cases binds a range of carbohydrate-based PAMPs, including trehalose 6,6’ dimycolate (TDM), lipoarabinomannan (LAM), lipomannan (LM), and phosphatidylinositol mannosides (PIMs) [2–4]. Interactions of CLRs with mycobacterial PAMPs induce intracellular signaling that triggers responses ranging from cytokine production to induction of adaptive immunity (Table 1). Here, we discuss signaling CLRs that recognize mycobacterial PAMPs and contribute to antimycobacterial immunity. We focus on the receptors that signal through the Spleen tyrosine kinase (Syk)/Caspase recruitment domain family member 9 (CARD9) pathway, including Dectin-1, Dectin-2, macrophage-inducible C-type lectin (Mincle), C-type lectin superfamily member 8 (Clecsf8) also called macrophage C-type lectin (MCL), and dendritic cell immunoactivating receptor (DCAR) (Fig 1)

    C-type lectin receptors, mycobacterial ligands, and their effects on pro-inflammatory cytokine production and contributions in host resistance to mycobacterial infections in vivo.

    No full text
    <p>C-type lectin receptors, mycobacterial ligands, and their effects on pro-inflammatory cytokine production and contributions in host resistance to mycobacterial infections in vivo.</p

    Recognition of mycobacterial pathogen-associated molecular patterns (PAMPs) by C-type lectin receptors (CLRs).

    No full text
    <p>Dectin-2 recognizes mannosylated lipoarabinomannan (ManLAM), dendritic cell immunoactivating receptor (DCAR) recognizes phosphatidylinositol mannosides (PIMs), macrophage-inducible C-type lectin (Mincle) and C-type lectin superfamily member 8 (Clecsf8) recognize the glycolipid trehalose 6,6’ dimycolate (TDM), while the mycobacterial ligand of Dectin-1 is yet to be identified. The interaction of the CLRs with mycobacterial PAMPs triggers cytoplasmic signaling and a number of cellular responses. The CLRs signal via Spleen tyrosine kinase (Syk), which associates with the Caspase recruitment domain family member 9 (CARD9)/B-Cell CLL/lymphoma 10 (BCL-10)/Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) complex, resulting in the production of pro-inflammatory cytokines and induction of adaptive T-cell immunity.</p

    Dectin-1-Syk-CARD9 Signaling Pathway in TB Immunity

    No full text
    One of the first steps toward mounting an effective immune response to Mycobacterium tuberculosis (Mtb) is recognition of the pathogen through pattern-recognition receptors (PRRs) expressed by innate immune cells. Activation of the PRR Dectin-1 by an unknown mycobacterial ligand triggers an intracellular signaling cascade involving numerous proteins, including spleen tyrosine kinase, protein kinase C-delta, and caspase recruitment domain family member 9, some of which have been shown to influence host immune response to TB infection. Here, we review the role of Dectin-1 signaling pathway in anti-mycobacterial immunity and discuss its contribution in the control of Mtb infection, and potential applications in TB vaccine adjuvanticity

    Dikakapa everday heroes - African journeys to success

    No full text
    This book, Dikakapa Everyday Heroes: African journeys to success, is the proud initiative of a social intervention project called Dikakapa: Every-day Heroes. "Dikakapa Everyday Heroes: African journeys to success" is a collection of short personal stories by young Africans. In the book, the authors exercise self introspection and examination to reflect on how they navigated the formal education system (matric and/or tertiary level) to emerge as winners in their chosen career paths. It is a motivational tool for those aspiring to join tertiary institutions and is an invaluable resource for new university entrants who often struggle to balance their new found independence with the demands and discipline that varsity requires
    corecore