7 research outputs found

    Experimental and Theoretical Electronic Structure and Symmetry Effects in Ultrathin NbSe2 Films

    Full text link
    Layered quasi-two-dimensional transition metal dichalcogenides (TMDCs), which can be readily made in ultrathin films, offer excellent opportunities for studying how dimensionality affects electronic structure and physical properties. Among all TMDCs, NbSe2 is of special interest; bulk NbSe2 hosts a charge-density-wave phase at low temperatures and has the highest known superconducting transition temperature, and these properties can be substantially modified in the ultrathin film limit. Motivated by these effects, we report herein a study of few-layer NbSe2 films, with a well-defined single-domain orientation, epitaxially grown on Gallium Arsenide (GaAs). Angle-resolved photoemission spectroscopy (ARPES) was used to determine the electronic band structure and the Fermi surface as a function of layer thickness; first-principles band structure calculations were performed for comparison. The results show interesting changes as the film thickness increases from a monolayer (ML) to several layers. The most notable changes occur between a ML and a bilayer, where the inversion symmetry in bulk NbSe2 is preserved in the bilayer but not in the ML. The results illustrate some basic dimensional effects and provide a basis for further exploring and understanding the properties of NbSe2.Comment: 15 pages, 4 figure

    Gapped Electronic Structure of Epitaxial Stanene on InSb(111)

    Full text link
    Stanene (single-layer grey tin), with an electronic structure akin to that of graphene but exhibiting a much larger spin-orbit gap, offers a promising platform for room-temperature electronics based on the quantum spin Hall (QSH) effect. This material has received much theoretical attention, but a suitable substrate for stanene growth that results in an overall gapped electronic structure has been elusive; a sizable gap is necessary for room-temperature applications. Here, we report a study of stanene epitaxially grown on the (111)B-face of indium antimonide (InSb). Angle-resolved photoemission spectroscopy (ARPES) measurements reveal a gap of 0.44 eV, in agreement with our first-principles calculations. The results indicate that stanene on InSb(111) is a strong contender for electronic QSH applications.Comment: 15 pages, 4 figure

    Elemental topological Dirac semimetal: {\alpha}-Sn on InSb(111)

    Full text link
    Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated with bulk electronic states near the Fermi level. Using angle-resolved photoemission spectroscopy (ARPES), we have observed such bulk Dirac cones in epitaxially-grown {\alpha}-Sn films on InSb(111), the first such TDS system realized in an elemental form. First-principles calculations confirm that epitaxial strain is key to the formation of the TDS phase. A phase diagram is established that connects the 3D TDS phase through a singular point of a zero-gap semimetal phase to a topological insulator (TI) phase. The nature of the Dirac cone crosses over from 3D to 2D as the film thickness is reduced
    corecore