43 research outputs found

    Immunological Mechanisms Mediating Hantavirus Persistence in Rodent Reservoirs

    Get PDF
    Hantaviruses, similar to several emerging zoonotic viruses, persistently infect their natural reservoir hosts, without causing overt signs of disease. Spillover to incidental human hosts results in morbidity and mortality mediated by excessive proinflammatory and cellular immune responses. The mechanisms mediating the persistence of hantaviruses and the absence of clinical symptoms in rodent reservoirs are only starting to be uncovered. Recent studies indicate that during hantavirus infection, proinflammatory and antiviral responses are reduced and regulatory responses are elevated at sites of increased virus replication in rodents. The recent discovery of structural and non-structural proteins that suppress type I interferon responses in humans suggests that immune responses in rodent hosts could be mediated directly by the virus. Alternatively, several host factors, including sex steroids, glucocorticoids, and genetic factors, are reported to alter host susceptibility and may contribute to persistence of hantaviruses in rodents. Humans and reservoir hosts differ in infection outcomes and in immune responses to hantavirus infection; thus, understanding the mechanisms mediating viral persistence and the absence of disease in rodents may provide insight into the prevention and treatment of disease in humans. Consideration of the coevolutionary mechanisms mediating hantaviral persistence and rodent host survival is providing insight into the mechanisms by which zoonotic viruses have remained in the environment for millions of years and continue to be transmitted to humans

    The Fecal Viral Flora of Wild Rodents

    Get PDF
    The frequent interactions of rodents with humans make them a common source of zoonotic infections. To obtain an initial unbiased measure of the viral diversity in the enteric tract of wild rodents we sequenced partially purified, randomly amplified viral RNA and DNA in the feces of 105 wild rodents (mouse, vole, and rat) collected in California and Virginia. We identified in decreasing frequency sequences related to the mammalian viruses families Circoviridae, Picobirnaviridae, Picornaviridae, Astroviridae, Parvoviridae, Papillomaviridae, Adenoviridae, and Coronaviridae. Seventeen small circular DNA genomes containing one or two replicase genes distantly related to the Circoviridae representing several potentially new viral families were characterized. In the Picornaviridae family two new candidate genera as well as a close genetic relative of the human pathogen Aichi virus were characterized. Fragments of the first mouse sapelovirus and picobirnaviruses were identified and the first murine astrovirus genome was characterized. A mouse papillomavirus genome and fragments of a novel adenovirus and adenovirus-associated virus were also sequenced. The next largest fraction of the rodent fecal virome was related to insect viruses of the Densoviridae, Iridoviridae, Polydnaviridae, Dicistroviriade, Bromoviridae, and Virgaviridae families followed by plant virus-related sequences in the Nanoviridae, Geminiviridae, Phycodnaviridae, Secoviridae, Partitiviridae, Tymoviridae, Alphaflexiviridae, and Tombusviridae families reflecting the largely insect and plant rodent diet. Phylogenetic analyses of full and partial viral genomes therefore revealed many previously unreported viral species, genera, and families. The close genetic similarities noted between some rodent and human viruses might reflect past zoonoses. This study increases our understanding of the viral diversity in wild rodents and highlights the large number of still uncharacterized viruses in mammals

    Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model

    No full text
    The need for quantification of land cover from pollen data has led to the development of a Landscape Reconstruction Algorithm (LRA). The LRA includes several models of which the REVEALS model estimates regional vegetation abundance using pollen assemblages from large sites (lakes or bogs). In this paper we explore the effects of selection and number of pollen samples, and choice of pollen productivity estimates on the REVEALS results. The effect of the size of vegetation surveys is also tested. The results suggest that the differences between two sizes of vegetation surveys have little effect on the model validation. The "characteristic radius" of regional vegetation in southern Sweden was estimated as 200 km. However, the vegetation composition in a 100 x 100 km(2) square matches well with that estimated by REVEALS. Whether 25, 20 (outliers excluded) or 4 pollen samples are used does not change the REVEALS reconstructions much although the error estimates are larger when outliers are included, and very large when only four samples are used. Therefore validation of the REVEALS model and REVEALS reconstructions of past vegetation can be performed using a limited number of pollen samples, although with caution. The use of many pollen samples from multiple sites is always better whenever possible. REVEALS reconstructions are closer to the actual vegetation when the Danish Pollen Productivity Estimates (PPEs) are used instead of the Swedish PPEs for Cereals, Rumex acetosa/acetosella, Plantago lanceolata and Calluna, indicating that the Danish PPEs are more reliable than the Swedish ones for those taxa. It is recommended to test more than one set of PPEs in validation and applications of the REVEALS model for a better evaluation of the results
    corecore