88 research outputs found

    Diagnostic accuracy of a sequence-specific Mtb-DNA hybridization assay in urine: a case-control study including subclinical TB cases.

    Get PDF
    Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) remains one of the deadliest infectious diseases globally. Timely diagnosis is a key step in the management of TB patients and in the prevention of further transmission events. Current diagnostic tools are limited in these regards. There is an urgent need for new accurate non-sputum-based diagnostic tools for the detection of symptomatic as well as subclinical TB. In this study, we recruited 52 symptomatic TB patients (sputum Xpert MTB/RIF positive) and 58 household contacts to assess the accuracy of a sequence-specific hybridization assay that detects the presence of Mtb cell-free DNA in urine. Using sputum Xpert MTB/RIF as a reference test, the magnetic bead-capture assay could discriminate active TB from healthy household contacts with an overall sensitivity of 72.1% [confidence interval (CI) 0.59-0.86] and specificity of 95.5% (CI 0.90-1.02) with a positive predictive value of 93.9% and negative predictive value of 78.2%. The detection of Mtb-specific DNA in urine suggested four asymptomatic TB infection cases that were confirmed in all instances either by concomitant Xpert MTB/RIF sputum testing or by follow-up investigation raising the specificity of the index test to 100%. We conclude that sequence-specific hybridization assays on urine specimens hold promise as non-invasive tests for the detection of subclinical TB. There is an urgent need for a non-sputum-based diagnostic tool allowing sensitive and specific detection of all forms of tuberculosis (TB) infections. In that context, we performed a case-control study to assess the accuracy of a molecular detection method enabling the identification of cell-free DNA from Mycobacterium tuberculosis that is shed in the urine of tuberculosis patients. We present accuracy data that would fulfill the target product profile for a non-sputum test. In addition, recent epidemiological data suggested that up to 50% of individuals secreting live bacilli do not present with symptoms at the time of screening. We report, here, that the investigated index test could also detect instances of asymptomatic TB infections among household contacts

    Case-control diagnostic accuracy study of a non-sputum CD38-based TAM-TB test from a single milliliter of blood

    Get PDF
    Background: CD4 T cell phenotyping-based blood assays have the potential to meet WHO target product profiles (TPP) of non-sputum-biomarker-based tests to diagnose tuberculosis (TB). Yet, substantial refinements are required to allow their implementation in clinical settings. This study assessed the real time performance of a simplified T cell activation marker (TAM)-TB assay to detect TB in adults from one millilitre of blood with a 24h turnaround time. Methods: We recruited 479 GeneXpert® positive cases and 108 symptomatic but GeneXpert® negativecontrols from presumptive adult TB patients in the Temeke District of Dar-es-Salaam, Tanzania. TAM-TB assay accuracy was assessed by comparison with a composite reference standard comprising GeneXpert® and solid culture. A single millilitre of fresh blood was processed to measure expression of CD38 or CD27 by CD4 T cells producing INF-γ and/or TNF-α in response to a synthetic peptide pool covering the sequences of Mycobacterium tuberculosis (Mtb) ESAT-6, CFP-10 and TB10.4 antigens on a 4-color FACSCalibur apparatus. Results: Significantly superior to CD27 in accurately diagnosing TB, the CD38-based TAM-TB assay specificity reached 93.4% for a sensitivity of 82.2% with an area under the receiver operating characteristics curve of 0.87 (95% CI 0.84-0.91). The assay performance was not significantly affected by HIV status. Conclusions: Wesuccessfully implemented TAM-TB immunoassay routine testing with a 24h turnaround time at district level in a resource limited setting. Starting from one millilitre of fresh blood and being not influenced by HIV status, TAM-TB assay format and performance appears closely compatible with the optimal TPP accuracy criteria defined by WHO for a non-sputum confirmatory TB test

    CD38 expression by antigen-specific CD4 t cells is significantly restored 5 months after treatment initiation independently of sputum bacterial load at the time of tuberculosis diagnosis

    Get PDF
    T cell activation markers (TAM) expressed by antigen-specific T cells constitute promising candidates to attest the presence of an active infection by Mycobacterium tuberculosis (Mtb). Reciprocally, their modulation may be used to assess antibiotic treatment efficacy and eventually attest disease resolution. We hypothesized that the phenotype of Mtb-specific T cells may be quantitatively impacted by the load of bacteria present in a patient. We recruited 105 Tanzanian adult tuberculosis (TB) patients and obtained blood before and after 5 months of antibiotic treatment. We studied relationships between patients' clinical characteristics of disease severity and microbiological as well as molecular proxies of bacterial load in sputum at the time of diagnosis. Besides, we measured by flow cytometry the expression of CD38 or CD27 on CD4+ T cells producing interferon gamma (IFN-γ) and/or tumor necrosis factor alpha (TNF-α) in response to a synthetic peptide pool covering the sequences of Mtb antigens ESAT-6, CFP-10, and TB10.4. Reflecting the difficulty to extrapolate bacterial burden from a single end-point read-out, we observed statistically significant but weak correlations between Xpert MTB/RIF, molecular bacterial load assay and time to culture positivity. Unlike CD27, the resolution of CD38 expression by antigen-specific T cells was observed readily following 5 months of antibiotic therapy. However, the intensity of CD38-TAM signals measured at diagnosis did not significantly correlate with Mtb 16S RNA or rpoB DNA detected in patients' sputa. Altogether, our data support CD38-TAM as an accurate marker of infection resolution independently of sputum bacterial load

    Ultrasound in managing extrapulmonary tuberculosis: a randomized controlled two-center study

    Get PDF
    Patients with clinically suspected tuberculosis are often treated empirically, as diagnosis - especially of extrapulmonary tuberculosis - remains challenging. This leads to an overtreatment of tuberculosis and to underdiagnosis of possible differential diagnoses.; This open-label, parallel-group, superiority randomized controlled trial is done in a rural and an urban center in Tanzania. HIV-positive and -negative adults (≥18 years) with clinically suspected extrapulmonary tuberculosis are randomized in a 1:1 ratio to an intervention- or control group, stratified by center and HIV status. The intervention consists of a management algorithm including extended focused assessment of sonography for HIV and tuberculosis (eFASH) in combination with chest X-ray and microbiological tests. Treatment with anti-tuberculosis drugs is started, if eFASH is positive, chest X-ray suggests tuberculosis, or a microbiological result is positive for tuberculosis. Patients in the control group are managed according national guidelines. Treatment is started if microbiology is positive or empirically according to the treating physician. The primary outcome is the proportion of correctly managed patients at 6 months (i.e patients who were treated with anti-tuberculosis treatment and had definite or probable tuberculosis, and patients who were not treated with anti-tuberculosis treatment and did not have tuberculosis). Secondary outcomes are the proportion of symptom-free patients at two and 6 months, and time to death. The sample size is 650 patients.; This study will determine, whether ultrasound in combination with other tests can increase the proportion of correctly managed patients with clinically suspected extrapulmonary tuberculosis, thus reducing overtreatment with anti-tuberculosis drugs.; PACTR, Registration number: PACTR201712002829221, registered December 1st 2017

    Rational manipulation of mRNA folding free energy allows rheostat control of pneumolysin production by Streptococcus pneumoniae

    Get PDF
    Rational manipulation of mRNA folding free energy allows rheostat control of pneumolysin production by Streptococcus pneumoniaeThe contribution of specific factors to bacterial virulence is generally investigated through creation of genetic "knockouts" that are then compared to wild-type strains or complemented mutants. This paradigm is useful to understand the effect of presence vs. absence of a specific gene product but cannot account for concentration-dependent effects, such as may occur with some bacterial toxins. In order to assess threshold and dose-response effects of virulence factors, robust systems for tunable expression are required. Recent evidence suggests that the folding free energy (?G) of the 5' end of mRNA transcripts can have a significant effect on translation efficiency and overall protein abundance. Here we demonstrate that rational alteration of 5' mRNA folding free energy by introduction of synonymous mutations allows for predictable changes in pneumolysin (PLY) expression by Streptococcus pneumoniae without the need for chemical inducers or heterologous promoters. We created a panel of isogenic S. pneumoniae strains, differing only in synonymous (silent) mutations at the 5' end of the PLY mRNA that are predicted to alter ?G. Such manipulation allows rheostat-like control of PLY production and alters the cytotoxicity of whole S. pneumoniae on primary and immortalized human cells. These studies provide proof-of-principle for further investigation of mRNA ?G manipulation as a tool in studies of bacterial pathogenesis.National Institutes of Health (www.nih.gov) (R01 AI092743 and R21 AI111020 to A.J.R.). F.E.A. was supported by the Portuguese Foundation for Science and Technology (www.fct.pt) SFRH/BD/33901/2009 and the Luso-American Development Foundation (www.flad.pt). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean Rim

    Get PDF
    Background: Lineage 1 (L1) and 3 (L3) are two lineages of the Mycobacterium tuberculosis complex (MTBC) causing tuberculosis (TB) in humans. L1 and L3 are prevalent around the rim of the Indian Ocean, the region that accounts for most of the world's new TB cases. Despite their relevance for this region, L1 and L3 remain understudied. Methods: We analyzed 2,938 L1 and 2,030 L3 whole genome sequences originating from 69 countries. We reconstructed the evolutionary history of these two lineages and identified genes under positive selection. Results: We found a strongly asymmetric pattern of migration from South Asia toward neighboring regions, highlighting the historical role of South Asia in the dispersion of L1 and L3. Moreover, we found that several genes were under positive selection, including genes involved in virulence and resistance to antibiotics . For L1 we identified signatures of local adaptation at the esxH locus, a gene coding for a secreted effector that targets the human endosomal sorting complex, and is included in several vaccine candidates. Conclusions: Our study highlights the importance of genetic diversity in the MTBC, and sheds new light on two of the most important MTBC lineages affecting humans

    Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly

    Get PDF
    Author Posting. © American Society for Cell Biology, 2009. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 20 (2009): 2766-2773, doi:10.1091/mbc.E09-01-0043.Distinct pathways from centrosomes and chromatin are thought to contribute in parallel to microtubule nucleation and stabilization during animal cell mitotic spindle assembly, but their full mechanisms are not known. We investigated the function of three proposed nucleation/stabilization factors, TPX2, {gamma}-tubulin and XMAP215, in chromatin-promoted assembly of anastral spindles in Xenopus laevis egg extract. In addition to conventional depletion-add back experiments, we tested whether factors could substitute for each other, indicative of functional redundancy. All three factors were required for microtubule polymerization and bipolar spindle assembly around chromatin beads. Depletion of TPX2 was partially rescued by the addition of excess XMAP215 or EB1, or inhibiting MCAK (a Kinesin-13). Depletion of either {gamma}-tubulin or XMAP215 was partially rescued by adding back XMAP215, but not by adding any of the other factors. These data reveal functional redundancy between specific assembly factors in the chromatin pathway, suggesting individual proteins or pathways commonly viewed to be essential may not have entirely unique functions.This work was supported by the American Cancer Society (grant PF0711401 to T. J. Maresca), the National Cancer Institute (grant CA078048-09 to T. J. Mitchison) and the National Institutes of Health (grant F32GM080049 to J. C. Gatlin and grant GM24364 to E. D. Salmon)

    Meat Intake and the Dose of Vitamin B3 - Nicotinamide:Cause of the Causes of Disease Transitions, Health Divides, and Health Futures?

    Get PDF
    Meat and vitamin B 3 – nicotinamide – intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by ‘welcoming’ gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B 3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive ‘meat transitions’. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic ‘old friends’ compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B 3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress
    corecore