8 research outputs found

    Properdin has an ascendancy over factor H regulation in complement-mediated renal tubular damage

    Get PDF
    BACKGROUND: Urinary (U)-complement components have been detected in patients with proteinuric renal diseases, and complement activation via the alternative pathway (AP) is believed to play a role in renal tubular damage. The present study aimed to examine the regulation of complement AP activation in patients with renal tubular damage by focusing on the balance between properdin (P) and factor H (fH). METHODS: In the in vivo studies, U concentrations of P, fH and membrane attack complex (MAC) were measured in patients with renal diseases using an enzyme-linked immunosorbent assay (ELISA), and their relationships with the clinical data were evaluated. In the in vitro studies, human proximal tubular epithelial cells (PTECs) were incubated with normal human serum (NHS), P-depleted serum (PDS), purified P and/or fH. Changes in cell morphology and phenotype were assessed by microscopy, real-time polymerase chain reaction (PCR), immunostaining and a cell viability assay. RESULTS: The U-P, fH and MAC concentrations were significantly higher in patients with renal disease than in normal controls and correlated with the U-protein and tubular damage markers. Furthermore, multivariate analysis revealed a relationship between P levels and tubular damage markers. There were no significant changes in morphology and mRNA expression in the AP components (P, fH, fB, C3, C5 and C9) after the addition of up to 25% NHS. Dose-dependent depositions of P or fH were observed after the addition of P or fH on PTECs. Depositions of P were not inhibited by fH in a mixture of a fixed concentration of P and a variable concentration of fH, and vice versa. Preincubation with the fixed concentration of P before the addition of NHS or PDS increased the depositions of P, C3 and MAC compared with incubation with intact NHS or intact PDS only; the depositions of C3 and MAC showed a serum-dependent trend. Preincubation with P before NHS addition significantly suppressed cell viability without causing morphological changes. CONCLUSIONS: In the pathogenesis of renal tubular damage, P can directly bind to PTECs and may accelerate AP activation by surpassing fH regulation

    Determination of the Binding Epitope of an Anti-Mouse CCR9 Monoclonal Antibody (C9Mab-24) Using the 1× Alanine and 2× Alanine-Substitution Method

    No full text
    C-C chemokine receptor 9 (CCR9) is a receptor for C-C-chemokine ligand 25 (CCL25). CCR9 is crucial in the chemotaxis of immune cells and inflammatory responses. Moreover, CCR9 is highly expressed in tumors, including several solid tumors and T-cell acute lymphoblastic leukemia. Several preclinical studies have shown that anti-CCR9 monoclonal antibodies (mAbs) exert antitumor activity. Therefore, CCR9 is an attractive target for tumor therapy. In this study, we conducted the epitope mapping of an anti-mouse CCR9 (mCCR9) mAb, C9Mab-24 (rat IgG2a, kappa), using the 1× alanine (1× Ala)- and 2× alanine (2× Ala)-substitution methods via enzyme-linked immunosorbent assay. We first performed the 1× Ala-substitution method using one alanine-substituted peptides of the mCCR9 N-terminus (amino acids 1–19). C9Mab-24 did not recognize two peptides (F14A and F17A), indicating that Phe14 and Phe17 are critical for C9Mab-24-binding to mCCR9. Furthermore, we conducted the 2× Ala-substitution method using two consecutive alanine-substituted peptides of the mCCR9 N-terminus, and showed that C9Mab-24 did not react with four peptides (M13A–F14A, F14A–D15A, D16A–F17A, and F17A–S18A), indicating that 13-MFDDFS-18 is involved in C9Mab-24-binding to mCCR9. Overall, combining, the 1× Ala- or 2× Ala-scanning methods could be useful for understanding for target–antibody interaction

    Maturation of the medaka immune system depends on reciprocal interactions between the microbiota and the intestinal tract

    Get PDF
    The interactions between the host immune system and intestinal microorganisms have been studied in many animals, including fish. However, a detailed analysis has not been performed in medaka, an established fish model for biological studies. Here, we investigated the effect of immunodeficiency on the microbiota composition and the effect of gut bacteria on intestinal epithelial development and immune responses in medaka. Chronological analysis of the intestinal microbiota of interleukin 2 receptor subunit gamma (il2rg) mutant medaka showed a gradual decrease in the evenness of operational taxonomic units, mainly caused by the increased abundance of the Aeromonadaceae family. Exposure of wild-type medaka to high doses of an intestine-derived opportunistic bacterium of the Aeromonadaceae family induced an inflammatory response, suggesting a harmful effect on adult il2rg mutants. In addition, we established germ-free conditions in larval medaka and observed large absorptive vacuoles in intestinal epithelial cells, indicating a block in epithelial maturation. Transcriptome analysis revealed a decrease in the expression of genes involved in the defense response, including the antimicrobial peptide gene hepcidin, whose expression is induced by lipopolysaccharide stimulation in normal larvae. These results show that reciprocal interactions between the microbiome and the intestinal tract are required for the maturation of the medaka immune system

    DataSheet_1_Maturation of the medaka immune system depends on reciprocal interactions between the microbiota and the intestinal tract.pdf

    No full text
    The interactions between the host immune system and intestinal microorganisms have been studied in many animals, including fish. However, a detailed analysis has not been performed in medaka, an established fish model for biological studies. Here, we investigated the effect of immunodeficiency on the microbiota composition and the effect of gut bacteria on intestinal epithelial development and immune responses in medaka. Chronological analysis of the intestinal microbiota of interleukin 2 receptor subunit gamma (il2rg) mutant medaka showed a gradual decrease in the evenness of operational taxonomic units, mainly caused by the increased abundance of the Aeromonadaceae family. Exposure of wild-type medaka to high doses of an intestine-derived opportunistic bacterium of the Aeromonadaceae family induced an inflammatory response, suggesting a harmful effect on adult il2rg mutants. In addition, we established germ-free conditions in larval medaka and observed large absorptive vacuoles in intestinal epithelial cells, indicating a block in epithelial maturation. Transcriptome analysis revealed a decrease in the expression of genes involved in the defense response, including the antimicrobial peptide gene hepcidin, whose expression is induced by lipopolysaccharide stimulation in normal larvae. These results show that reciprocal interactions between the microbiome and the intestinal tract are required for the maturation of the medaka immune system.</p
    corecore