3 research outputs found

    Turbine blade temperature calculation and life estimation - a sensitivity analysis

    Get PDF
    AbstractThe overall operating cost of the modern gas turbines is greatly influenced by the durability of hot section components operating at high temperatures. In turbine operating conditions, some defects may occur which can decrease hot section life. In the present paper, methods used for calculating blade temperature and life are demonstrated and validated. Using these methods, a set of sensitivity analyses on the parameters affecting temperature and life of a high pressure, high temperature turbine first stage blade is carried out. Investigated uncertainties are: (1) blade coating thickness, (2) coolant inlet pressure and temperature (as a result of secondary air system), and (3) gas turbine load variation. Results show that increasing thermal barrier coating thickness by 3 times, leads to rise in the blade life by 9 times. In addition, considering inlet cooling temperature and pressure, deviation in temperature has greater effect on blade life. One of the interesting points that can be realized from the results is that 300hours operation at 70% load can be equal to one hour operation at base load

    GT2006-90011 Comparative Investigation of Advanced Combined Cycles

    Get PDF
    ABSTRACT Combined cycles, at present, have a prominent role in the power generation and advanced combined cycles efficiencies have now reached to 60 percent. Examination of thermodynamic behavior of these cycles is still carried out to determine optimum configuration and optimum design conditions for any cycle arrangement. Actually the performance parameters of these cycles are under the influence of various parameters and therefore the recognition of the optimum conditions is quiet complicated. In this research an extensive thermodynamic model was developed for analyzing major parameters variations on gas turbine performance and different configurations of advanced steam cycles: dual and triple pressure cycles with and without reheating in steam turbine sections. In this model it is attempted to consider all factors that affect on actual behavior of these cycles such as blade cooling (air cooling) in gas turbine and different formulations for Heat Recovery Steam Generator (HRSG) performance calculation. Results show good agreement with manufactures data. In the case of gas turbine cycle, location of coolant extraction has large influence on cycle performance. For extraction from compressor end, improving blade cooling technology is suitable than increasing TIT. For mid stage extraction, improving blade cooling technology and TIT has similar effects on efficiency, while power is more sensitive to TIT. Coolant air precooling has large positive effect in high TIT and medium blade cooling technology, but always it increases power. Turbine exhaust temperature has large influence on optimum layout and configuration of HRSG, while for low exhaust temperatures increasing number of pressure levels increase power and heat recovery greatly, for high exhaust temperatures this leads lower enhancement in power and recovery. Second law efficiency of HRSG is proportional to power production in steam cycle. It decreases with increasing gas turbine exhaust temperature. NOMENCLATUR

    GT2006-90932 Comparative Evaluation of Advanced Gas Turbine Cycles With Modified Blade Cooling Models

    No full text
    ABSTRACT Advanced gas turbine cycles use advanced blade cooling technologies to reach high turbine inlet temperature. Accurate modeling and optimization of these cycles depend on blade cooling model. In this study, different models have been used to simulate gas turbine performance. The first model is the continuous model and the second is stage-by-stage model with alternative methods for calculating coolant, stagnation pressure loss and SPR. Variation of specific heat and enthalpy with temperature are included in both models. The composition of gas stream in turbine is changed step by step due to air cooling. These models are validated by two case study gas turbine results, which show good agreement with manufacture's data. Then using these models, a comparison between continuous and stage by stage models is done. Results show that the stage by stage model can be improved to use in variable CPR by changing number of turbine stages. Also, the number of film cooled rows and coated rows change the number of cooled rows. This also increases power, efficiency and TET, while reduces coolant mass flow. For high TIT and with current blade cooling technology, efficiency seems to have no increase relative to lower TIT. CAP increases power but decreases efficiency, where with FP efficiency also increases, while power increases too
    corecore