920 research outputs found

    Scale Symmetry Breaking From Total Derivative Densities and the Cosmological Constant Problem

    Get PDF
    The use in the action integral of totally divergent densities in generally coordinate invariant theories can lead to interesting mechanisms of spontaneous symmetry breaking of scale invariance. With dependence in the action on a metric independent density Ί\Phi, in 4D4D , we can define Ί=ΔΌΜαÎČ∂ΌAΜαÎČ\Phi =\varepsilon^{\mu\nu\alpha\beta}\partial_{\mu}A_{\nu\alpha\beta} that gives a new interesting mechanism for breaking scale symmetry in 4-D theories of gravity plus matter fields, through the AΜαÎČA_{\nu\alpha\beta} equations of motion which lead to an integration constant the breaks the scale symmetry, while introducing terms of the form eGlnKeG ln K , ee being the determinant of the vierbein, GG being the Gauss Bonnet scalar and KK being scalar functions of the fields transforming like K→cKK \rightarrow cK (where c is a constant) under a scale transformation. Such a term is invariant only up to a total divergence and therefore leads to breaking of scale invariance due to gravitational instantons. The topological density constructed out of gauge field strengths ΔΌΜαÎČFΌΜaFαÎČa\varepsilon^{\mu\nu\alpha\beta}F^a_{\mu\nu}F^a_{\alpha\beta} can be coupled to the dilaton field linearly to produce a scale invariant term up to a total divergence. The scale symmetry can be broken by Yang Mills instantons which lead to a very small vacuum energy for our Universe.Comment: Accepted for Publication in Physics Letters B, 15 page

    Simple Scheme for Gauge Mediation

    Get PDF
    We present a simple scheme for constructing models that achieve successful gauge mediation of supersymmetry breaking. In addition to our previous work [1] that proposed drastically simplified models using metastable vacua of supersymmetry breaking in vector-like theories, we show there are many other successful models using various types of supersymmetry breaking mechanisms that rely on enhanced low-energy U(1)_R symmetries. In models where supersymmetry is broken by elementary singlets, one needs to assume U(1)_R violating effects are accidentally small, while in models where composite fields break supersymmetry, emergence of approximate low-energy U(1)_R symmetries can be understood simply on dimensional grounds. Even though the scheme still requires somewhat small parameters to sufficiently suppress gravity mediation, we discuss their possible origins due to dimensional transmutation. The scheme accommodates a wide range of the gravitino mass to avoid cosmological problems.Comment: 13 page

    N=1 Non-Abelian Tensor Multiplet in Four Dimensions

    Full text link
    We carry out the N=1 supersymmetrization of a physical non-Abelian tensor with non-trivial consistent couplings in four dimensions. Our system has three multiplets: (i) The usual non-Abelian vector multiplet (VM) (A_\mu{}^I, \lambda^I), (ii) A non-Abelian tensor multiplet (TM) (B_{\mu\nu}{}^I, \chi^I, \varphi^I), and (iii) A compensator vector multiplet (CVM) (C_\mu{}^I, \rho^I). All of these multiplets are in the adjoint representation of a non-Abelian group G. Unlike topological theory, all of our fields are propagating with kinetic terms. The C_\mu{}^I-field plays the role of a Stueckelberg compensator absorbed into the longitudinal component of B_{\mu\nu}{}^I. We give not only the component lagrangian, but also a corresponding superspace reformulation, reconfirming the total consistency of the system. The adjoint representation of the TM and CVM is further generalized to an arbitrary real representation of general SO(N) gauge group. We also couple the globally N=1 supersymmetric system to supergravity, as an additional non-trivial confirmation.Comment: 18 pages, no figur

    Non-Abelian Tensors with Consistent Interactions

    Full text link
    We present a systematic method for constructing consistent interactions for a tensor field of an arbitrary rank in the adjoint representation of an arbitrary gauge group in any space-time dimensions. This method is inspired by the dimensional reduction of Scherk-Schwarz, modifying field strengths with certain Chern-Simons forms, together with modified tensorial gauge transformations. In order to define a consistent field strength of a r-rank tensor B_{\mu_1...\mu_r}^I in the adjoint representation, we need the multiplet (B_{\mu_1...\mu_r}^I, B_{\mu_1...\mu_{r-1}}^{I J}, ..., B_\mu^{I_1...I_r}, B^{I_1... I_{r+1}}). The usual problem of consistency of the tensor field equations is circumvented in this formulation.Comment: 15 pages, no figure

    One-Dimensional Confinement and Enhanced Jahn-Teller Instability in LaVO3_3

    Full text link
    Ordering and quantum fluctuations of orbital degrees of freedom are studied theoretically for LaVO3_3 in spin-C-type antiferromagnetic state. The effective Hamiltonian for the orbital pseudospin shows strong one-dimensional anisotropy due to the negative interference among various exchange processes. This significantly enhances the instability toward lattice distortions for the realistic estimate of the Jahn-Teller coupling by first-principle LDA+UU calculations, instead of favoring the orbital singlet formation. This explains well the experimental results on the anisotropic optical spectra as well as the proximity of the two transition temperatures for spin and orbital orderings.Comment: 4 pages including 4 figure

    A Model of Direct Gauge Mediation

    Get PDF
    We present a simple model of gauge mediation (GM) which does not have a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. This is the first phenomenologically viable example of this type in the literature. Despite the direct coupling, the model can preserve perturbative gauge unification. This is achieved by the inverted hierarchy mechanism which generates a large scalar expectation value compared to the size of supersymmetry breaking. There is no dangerous negative contribution to the squark, slepton masses due to two-loop renormalization group equation. The potentially non-universal supergravity contribution to the scalar masses can be suppressed enough to maintain the virtue of the gauge mediation. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Beyond the simplicity of the model, it possesses cosmologically desirable features compared to the original models of GM: an improved gravitino and string moduli cosmology. The Polonyi problem is back unlike in the original GM models, but is still much less serious than in hidden sector models.Comment: LaTeX, 12 page

    Singularity of the Velocity Distribution Function in Molecular Velocity Space

    Get PDF
    We study the boundary singularity of the solutions to the Boltzmann equation in the kinetic theory. The solution has a jump discontinuity in the microscopic velocity ζ on the boundary and a secondary singularity of logarithmic type around the velocity tangential to the boundary, ζn∌0-, where ζn is the component of molecular velocity normal to the boundary, pointing to the gas. We demonstrate this secondary singularity by obtaining an asymptotic formula for the derivative of the solution on the boundary with respect to ζnn that diverges logarithmically when ζn∌0-. Our study is for the thermal transpiration problem between two plates for the hard sphere gases with sufficiently large Knudsen number and with the diffuse reflection boundary condition. The solution is constructed and its singularity is studied by an iteration procedure

    X-Ray Fluctuations from Locally Unstable Advection-Dominated Disks

    Get PDF
    The response of advection-dominated accretion disks to local disturbances is examined by one-dimensional numerical simulations. It is generally believed that advection-dominated disks are thermally stable. We, however, find that any disurbance added onto accretion flow at large radii does not decay so rapidly that it can move inward with roughly the free-fall velocity. Although disturbances continue to be present, the global disk structure will not be modified largely. This can account for persistent hard X-ray emission with substantial variations observed in active galactic nuclei and stellar black hole candidates during the hard state. Moreover, when the disturbance reaches the innermost parts, an acoustic wave emerges, propagating outward as a shock wave. The resultant light variation is roughly (time) symmetric and is quite reminiscent of the observed X-ray shots of Cygnus X-1.Comment: plain TeX, 11 pages, without figures; to be published in ApJ Lette

    Security of EPR-based Quantum Cryptography against Incoherent Symmetric Attacks

    Get PDF
    We investigate a new strategy for incoherent eavesdropping in Ekert's entanglement based quantum key distribution protocol. We show that under certain assumptions of symmetry the effectiveness of this strategy reduces to that of the original single qubit protocol of Bennett and Brassard
    • 

    corecore