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Abstract We study the boundary singularity of the solutions to the Boltz-
mann equation in the kinetic theory. The solution has a jump discontinuity in
the microscopic velocity ¢ on the boundary and a secondary singularity of log-
arithmic type around the velocity tangential to the boundary, (, ~ 0_, where
(, is the component of molecular velocity normal to the boundary, pointing to
the gas. We demonstrate this secondary singularity by obtaining an asymptotic
formula for the derivative of the solution on the boundary with respect to (,

that diverges logarithmically when (, ~ 0_. Our study is for the thermal tran-



A Self-archived copy in RBAFFHRE) KD LY
i1

,f?: ﬁﬁ j( % Kyoto University Research Information Repository KU RENAI

¥/ KYOTO UNIVERSITY https://repository.kulib.kyoto-u.acjp Kyols Unversty Research formation Repostony

2 I-Kun Chen, Hitoshi Funagane, Tai-Ping Liu, Shigeru Takata

spiration problem between two plates for the hard sphere gases with sufficiently
large Knudsen number and with the diffuse reflection boundary condition. The

solution is constructed and its singularity is studied by an iteration procedure.

1. Introduction

The kinetic theory allows for rich boundary phenomena. In the present paper,
we are interested in the singularity of the velocity distribution function on the
boundary, which is an important element of the boundary phenomena. We con-
sider the problem for thermal transpiration between two plates with diffuse re-
flection boundary condition. It is known in [5] that the velocity distribution
function on the boundary has a jump discontinuity at (, = 0, where (,, is the
normal component of the molecular velocity at the boundary, pointing to the
gas. A more subtle secondary singularity is in the form of (, In|¢,| for ¢, ~ 0_,
[7]. In the present paper, for highly rarefied gases, we confirm the secondary
singularity by obtaining an asymptotic formula for the derivative of the solution
on the boundary with respect to (, that diverges logarithmically when (, ~ 0_.
Consider stationary linearized Boltzmann equation:
> 1
> G (@, ¢) = —L(f)(@, ), (1.1)
i=1

in a region between two parallel infinite plates

1 1
Q:{xER3:—§<x1<§}. (1.2)

The linearization is respect to the normalized Maxwellian

E(C) =n"2¢71<1, (1.3)



A Self-archived copy in RBAFFHRE) KD LY

ALK & Kyoto University Research Information Repository KURENAI I%‘I

¥/ KYOTO UNIVERSITY https://repository.kulib.kyoto-u.acjp Kyols Unversty Research formation Repostony

Singularity of the velocity distribution function in molecular velocity space 3

The diffuse reflection boundary condition prescribes that the distribution leaving
the boundary is in thermal equilibrium with the boundary temperature and that

there is no mass flux across the boundary; for the domain we consider,

f(i%,l‘Q,l‘?,,C) = Uj:E% +TU)(‘C|2 - %)E%? for Cl § 07

s = — 47 4 0 [ (GBS (3,0,

(1.4)

where 7, is the perturbation of the boundary temperature around the reference
normalized temperature. The thermal transpiration phenomenon is that temper-
ature gradient of the boundary, without pressure gradient, can induce a gas flow.
The problem is considered here with linear boundary temperature, 7, = czs, so

that the solution can take a special form:

7.0 = o310 + a1 - ) BY),

and the symmetric part of gz~5 defined by

1

(@1, Gy G G) 1= 5 (B, €, G2y Ga) + S0, —C1, G2, G3) — (04 + 0 ) B

N

);

vanishes on the boundary for molecular velocity toward the gas region:

105, 0(21,¢) = 2L(¢) — G([¢2 = 3)EZ(Q), for — 3 <y < 3,

¢(i%7 C) = 07 for Cl § 0.

(1.5)

Here, we can observe that ¢ on the boundary has a jump at (; = 0 whenever
it is not zero for the microscopic velocity toward the boundary and close to
tangential to the boundary. The linear collision operator can be decomposed
into a damping multiplicative operator —v and a smoothing integral operator

K:

L(#)(C) = —v(I<he (<) + K () (<)- (1.6)
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For the hard sphere case considered here,

vn) =272 (e + (29 + %) /" e as), W
0
K(9)(©) = /R (ST le (18)
k(C,¢) =27 2r ¢ — g*|—1e—%%ifjﬂﬁ—ilc—c*|2

1612 _ 1¢x12
2

—2 A= Glem
=k1(¢, G) — k2(C, G, (1.9)

and the following bound for v is well known: there exist positive constants vg
and v; such that

wo(1+[¢]) < w(l¢]) < (1 +[C]). (1.10)
We will view the smoothing term K (¢) as the source in (1.5) and integrate (1.5)

to obtain an integral equation for ¢:

(ZS(ZZ?l, C) =
I e Hn LR (9)(5,Q) — G~ EHQ)s, for >0,
2 ke HEH (LR (9)(s,) — GolIC2 — DE(Q))ds, for ¢ <0,

(1.11)

To solve (1.11), we consider an iteration scheme:

__v 1 1
51— e marzT e (3 |¢2)ES, for ¢ >0,
po(z1,C) = (1.12)
(1 — e a1 (3 — ()3, for ¢4 < 0,

x

r@|1< ‘eiﬁlmlfle(an—l)dS, for Cl > O,
C (1.13)

ffl n|C1\6_ﬁlllwl_S|K(¢n71)d87 for ¢; <0.

—

[N

(bn(xla C) =

In the above, v = v(|¢]) and K(¢) = K(¢)(s, (); such abbreviations will be used

in what follows. For a highly rarefied gas, x large enough,

n=0
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Singularity of the velocity distribution function in molecular velocity space 5

converges and solves (1.11), [2]. A numerical method is developed in [6] based on
this iteration. In [3], it is used to prove the logarithmic singularity of flow velocity
near the boundary. It is indicated in [7] that the singularity in z; of logarithmic
type of K(¢) induces the same type of singularity in {; on the boundary. This
observation is a key element in the present study.

In the present paper, we prove that the divergence of 9., K(¢)(z1,() near
upper (lower) boundary as a logarithmic function induces the same type of di-
vergence of O¢, ¢ on the upper (lower) boundary for ¢; ~ 04 (0_). The main
step is to prove that 9., K(¢o) has the singularity, and this task is reduced to
analyzing an integral F, a function of ¢; and ¢, = ({3 + §32)% defined in Defini-
tion 1. It is known from [3] that the higher order terms 0., K (¢, ), n > 1 can be
controlled when k is sufficiently large.

In our theorem, we characterize the secondary singularity by the following

asymptotic formula for 0 < (7 < % < ﬁ.

Theorem 1.1. If k large enough and 0 < {1 < % < ﬁ, then

0 6(3.0) = 25 { ~1nl

K|( | Ink

)GU () +O(

v K

)+ 0(1)}, (1.15)
where ¢, = /(3 + (3 and
[ G U AR A N U S Gy S W
UG) =—2"%nx 4(1 SCT)e 3¢ 9-ig 410(2gr)e . (1.16)
Here, 1y is the zeroth order modified Bessel function of the the first kind.

Remark 1.1. In [7], from the symmetry of the equation, the authors observe that

$E2 /¢y = ¢(s,(1,|C]). They confirmed numerically

B3l mar+atinG,  for G~ 0, (1.17)
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where a1 and as are independent of (;. To see the correspondence between

Theorem 1.1 and (1.17), we introduce new variables u, p, 6 that represent ¢ by

¢ = (u,\/p? — p2cosb,\/p? — p?sinb), (1.18)

to have
951 gt 9 4k _Gicosd -1

_phfest 9 Ly, Gsind O 1

(1.19)

For fixed p > 0,say p=0.5,and 0 < (3 < % < ﬁ, the second term on the right
hand side of the equation above is bounded from the numerical computation and
the last term is bounded by C'5 F 3 to be studied in Section 5. Therefore, we
conclude that Theorem 1.1 and (1.17) are consistent. Numerical demonstration

of (1.17) for p = 0.5 can be found in Figure 5 of [7].

In the next section, we lay out an overall plan for the proof of Theorem 1.1. In
Section 3, an asymptotic formula with spatial singularity of 9,., K (¢o) is studied.
The exact expression of the function F(0, ¢,.) and the continuity of F for ¢; ~ 0is
studied in Section 4. The contribution of the higher order terms 9., K (¢n), n > 1
is estimated in Section 5.

Our analysis of the boundary singularity for the Boltzmann equation con-
sists of exact calculations of the solution for the particular physical situation
of thermal transpiration in the parallel plates. We anticipate that this type of

singularity demonstrated here would happen for more general situations.

2. Plan of proof

We will lay out the plan of proof of Theorem 1.1 in this section.



A Self-archived copy in

7 . Ny, RBREFHER)ES bY
I ﬁﬁ j( ? Kyoto University Research Information Repository
¥/ KYOTO UNIVERSITY https://repository.kulib.kyoto-u.ac.jp ﬁpeﬁgmoéolni‘;!;
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We formally differentiate ¢,,, n > 1, in (1.13) with respect to {; on the

1

boundary, say, at the upper boundary, z; = 5:

e AJ;7(14~JLﬂlA—SDefﬂ%ﬂéfﬂKX¢ )ds
-1 wlG[? w[C1]12 n—1
1 v |1_
0oLy — 4 T e T K (s
C nlyo = 1 ’
' 2 7‘[5 1 6*#1“%*5“"%_“]{(@1) )dS C >0
—3 I KIC] n—1)8% 51 =
07 Cl < 07
where 1/ = ) The integration by parts of the first term simplifies the

- )
P lp=(¢]

expression for {1 > 0 as

[N

Loy 1 ~werGo L
8C1¢n(§7<)* PIAE /ée 5} (2 $)0sK (¢pp—1)ds

v 1
_ We RICT] K(¢>n,1)(—§,0

1
2 1 v o1 V/|l — S|
[3—sl” 12
_ e FlcTl2 K(¢p,_1)ds
/, K[l K[C] ( )

1
2

Nl

1 7L|175‘
+ JEE— KrlCp[ 12 alK n— ds. 2.1
L, mar o K (na)ds 2

_1
2

Our goal is to show that the logarithmic singularity of ¢, ¢ is dominated by the

first term on the right hand side of (2.1) for n = 1:

) L ertntond oo (2.2
= K|C1 [ . .
,‘<.}|C1 |2 7% e 9 5)0s 0)das
The main source of singularity of W is the spatial singularity of 9K (¢g) ~
—In(3 — s). The following lemma shows that the spatial singularity of In(3 — s)

type induces a singularity in ¢; for W, (2.2).

Lemma 2.1.

Pl gl 1 S
/ = e war(s S)(i—s) In(=—s)ds = % <ln,{C1|+1—7—|—O(e 2“<1|)> ,
_ v

e
R 2 v

where 7y is the Euler constant.
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Proof. Letting z = Z;(IICCJI) (3 —5), we have

(PR | 1
ISIRY — — 1 - — d
H|C1|26 (2 s) n(2 s)ds

Rlerl weaT
= %(/ ! e “zlnzdz +In R‘Cll/ ' e_zzdz)
v 0 v 0

e}
:i(l—'y—/ e_zzlnzdz—&-lnliKl'(l—

‘\
o Nle

v v
e kIl —e h‘IC1\))

2

v i voooalG
:%(ln’dgl‘ +1—7+O(67W/<1‘)).

v v

O

The first step in studying the spatial singularity of 95K (¢p) is to derive the

following asymptotic formula.

Lemma 2.2.

0.K(60)(5,0) = (1n(5 +5) — n(5 = 9)) (GF(G1,6) +O(-5) ) + 0. (23)

Here, ¢, = ((3 + (g)% and F is a function defined later in Definition 1.

Lemma 2.2 will be proved in Section 3, Lemma 3.1 and Section 4, Lemma 4.1.
It implies that 9,K (¢) has a logarithmic singularity in s as long as (o F is
bounded away from zero. In Section 4, the following closed form expression for

F(0,¢.) and the continuity of F when (; ~ 0 will be obtained.

Lemma 2.3.

_ 3 a2 1
F(0,6)=—2"37"5(1— égf)e_T - 2—%7r—i10(§g3)e—<3, (2.4)

where Io(x) is the zeroth order modified Bessel function of the first kind.

Lemma 2.4. If 0 < C_l <( < then

L
100~

IF (¢, ¢) = F(CL, 6| < ClG -Gl 2. (2.5)
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Singularity of the velocity distribution function in molecular velocity space 9

The remaining terms in (2.1) for n = 1 are minor and studied in Section 5.
Also, the higher order terms, i.e., (2.1) for n = 2,3, ..., are minor, which is also
discussed in Section 5. Summarizing the contributions of these minor terms, we

have

Lemma 2.5. For large enough k and 0 < (7 < K—lg,

1 1 1 C1
0,0(5:€) — 9 61(5:0) ~ % 90(5, 0l < O ([0 2 4 ) (C10), (2.
Oan(3.0+ W] < O, (27)
C
06,60(3,0)] < 5 (2.8)

With the lemmas above as given, we can present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let U((,) = F(0,(.). Combining Lemmas 2.2, 2.3, and

2.4, we obtain

0. K (0n)(5:€) = (In(g + 5) ~ n( ) (@G +O() ) + 0. (29)

1
for0< ¢ < ?12 < ﬁ. Here we have used that (7 < %

Similar to Lemma 2.1, we have

1
2 ] v (1_ 1 1 K I{C v
»\<|(2 st _ — - it _ R[]
/(J"€|C1|2e 1 (2 s)ln(2 s)ds VQ(ln ” +1—-~74+0(e 1 ))

Furthermore,

1 a1 1
- w[C |(2 )t _ -
\/0 K\C1|26 1 (2 s)(\ln(2+s)|+C)ds|

1

2 1 v (1_ 1 K
(3—9)
< | ——e maETI(C —5)(In2+ C)ds < C—
_/o f<;|C1|2e 1 (2 5)(In2+C)ds < v2’

and

/0 L om51G-9 L _ i + 9+ | = 8)] + O)ds
K| 2 2 2 2

1
2

</O L1 (| In(E + )] + In2 4+ C)ds < O
KIC1 n(— n - .
=/, H|C1|26 5 ts s<C-3
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Combining the inequalities above together, for small ¢(; > 0, we have an asymp-

totic formula for W of (2.2):

w =2 G +od+ o). (2.10)

14

Combining (2.10) with Lemma 2.5, for large enough k, we obtain (1.15) and
complete the proof of Theorem 1.1. O
3. Spatial singularity of 9;K (¢g)(s, ()

The goal of this section is to prove the following lemma:

Lemma 3.1. If k is large enough, then

0K (o) (5,¢) = (m(1 +s)—In(s - ) (FO) + 0(%)) +0(1), (31

2 2
where
27 [e’e) ﬁ 27 o0
F(¢) = —/ / 9¢(p, 0, p)dpdep + e 2 / / he(p, 0, @)dpdyp,
0 0 0 0
(3.2)
g —UeZ=e2 1y e 5 oy —22 9
gc(psa, ) i=c1|¢ — G| e AT V1=a?cosp(s —pT)e” T p7,
(3.3)
5 9
he(p e, 9) = e2|C = GV = a?cos (5 — pP)e ™" p?, (3.4)
and
01:2_%7{'_%) 02:2_%71-_%’

1
2

=Gl = (6= p0)* + (G~ VT — a2 cos @) + (G — pv/1 — asin)?)

RBAFEFHERY LS b
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Singularity of the velocity distribution function in molecular velocity space 11

Proof. Substitution of (1.12) into the definition of K, (1.8) and (1.9), yields

s 1 v iy B B
85K(¢0):—/< T Zkl(QC*)K”e mleaT(z )C*Q(i_‘g*ﬁ)e 316 qc,
*1< *
-3 1 —senG-9p (O 2y, 31C. 2
+ ; ™ 4k2(§7€*)ﬂe KICx1l N2 4*2(5_‘C*| )e 216 dc*
«1<0 %

2 1 __¥x (1 1
+/ Tk (C, G e ~|c*1|(2+8)<*2(§ —|CP)e 2l P g,
C*1>0 |C*1| 2

1 —_Vx (1l g 1
a / W_%kQ(Cvg*) e il (é-‘r( )C*2(§ - |C*|2)6_é‘<*|2dC*
Cx1>0 |C*1| 2

:Z*A_+B_+A+*B+,

where v, = v(|¢.]). Introducing new variables p, «, ¢ that represent (. by
¢ = (pa, pV/1 — a2 cosp, pyV/1— a?siny), (3.5)
where p € [0,00), a € [-1,1], and ¢ € [0, 27), we can write
boEmoree 1 _vw1y
Ay = / / / ge(p, £a, o) =~ rra CE) dpdipda, (3.6)
0 Jo 0 «
2 1 27 0o 1 y
By = et / / / hg(p,ia,ap)fefﬁ(%is)dpdgoda. (3.7
o Jo Jo o
Lemma 3.1 is a consequence of the following estimates for AL and B:
1 + 2m [}
3 S 1
as =@ ([T [T atpooitote o)) o, 58)
o Jo

lis R L e 1 <12
B: =—In(2 —) <62 / / h¢(p, 0, p)dpdp + 0(K2)e4)
o Jo

<2

+O1)e . (3.9)

The estimates for Ay and By can be obtained from those of A_ and B_ by
replacing % — s and —(; with % + s and (7, and the estimate for B_ is similar
and in fact simpler than that for A_. Thus, we will only prove the estimate for
A_.

From (1.7),

d v(p) 1 /p 2
—_— )= ——— 65d5<0.
dp( p ) V2p3 Jo
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Thus, V(p ) is a monotone decreasing function of p. From the well-known bounds

(1.10), we have v1(1 + %) > %f) > (1 4+ %) Therefore, 22} tends to infinity

p

as p — 0 and converges to some positive constant as p — co. Thus, for K > 21,

there exists a unique solution p = ps to ”(p) (2

integration in A_ into two, A_ = Ay + As.

Consider first

s) = 1. We use p; to divide the

(3.10)

ps r2m 1 1 l(p (4
A ::/ / / 9c(p, —a, p) =€~ w2~ dadpdp.
0 0 0 &
Note that
1 v v(p) 1 _vle)1_ Kp K
e wpa (3 S)‘_|7( ) wra (3 s)| | | < C|
e rp e rp <
o Kpa 2 v(p)(5 —5) (P (5 —9)

Using this and applying Hélder’s inequality, we have

1
Ps 27T <202 1 a2 5 2 3
4] <C (/ / 1€ = G| 2 Eiemer T2l |2_PQ|€_2p2dpdcpda>

(/p“q/% 2~ e |()@_)|2dadsodp>2.

The first term on the right-hand side is finite. Since |ﬁ| < 1in the domain
2

of integration, the second term is also finite. Thus, we obtain
|[A1] = O(1).

Next, consider As:

m 1 _ v (%
Ay = gg ,— QL) Pl dozdpdgo

27 @
1 v (% *5)
=/ / / ge(pr—ai0) 2 (/ Zem dz) dadpdep.
0 . Jo da z

Introducing exponential integral

El(x):/ e_mt_ldt:/ e *s ds,
1 T

(3.11)

(3.12)

(3.13)

RBAFEFHERY LS b
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Singularity of the velocity distribution function in molecular velocity space 13
we have
a 1 é )(%7‘ 1 _ 1 _
/ 10, g WG9, p G-, (3.14)
1 2 Kpa Kp
There is a well-known expansion for F; (for example see [1]),
1)k+1 gk
Ey(z) = —— lnx—i-z k i (3.15)
We also have
_ 1
“In(1+ =) < Eq(z)<e Iln(l—k;) for « > 0. (3.16)
Noting that
v(p) (% —s) N vo(5 — )
Kp «@ ko
we see, for fixed s and k, that F (%%a_s)) tends to 0 uniformly with respect
to p as «a tends to zero. Using integration by parts, we obtain
27 0o
P
Azz/ / 9¢(p,0,9) En ( (o) ))d d
0 s Kp
27 o] 1 vip 1 _ s v(p 1 _ s
0 ps JO Kkp rpQ
9 (p, —a, p)dadpd
8agC P y P PAP.
Since (3.15) implies
1 1
V(p)E:p S))+ln(2 )+ln( vlp ))|<C’ for ps <p<oo,  (3.17)

[ E1(
we can rewrite the first term on the right-hand side and obtain

27
/ / 9¢(p, 0, p)dpdyp
o v
(p) )9¢(p, 0, p)dpdp

JO(1)dpdp — / / (42

I
/,, p)(%—S))_El(V .

1l_
2

Ay =

/ Kpa

—a, p)dadpdyp

/
-

—AIQ+R1+R2+R3+R4.

8a ~—9¢(p,
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Note that the singularity of A} is explicit:

1 _ s 27
A= -t220) [ gcp.0.0)dpas. (3.18)
k 0 Jp,
Below we first prove that

1 _ s 2 o) 1
A= w0 [T gcpoppdpdo o) (319)

K 0 0 K

by showing that
27 rps 1
| [ scto0ppinte = 015). (320)
0

Then we prove that Ry, Ry, R3, and Ry are O(1) and conclude the estimate
(3.8) for A_.
For the estimate of A}, we first estimate ps. Recalling the inequality (1.10),

we see from the definition of p, that

Since k > 2v1, we have

21/1( — S)

pPs <

X [V

1

<1, ps=0()-.

P (1)~
Therefore, we can prove (3.20) by showing that

2T rps
| / / 9¢(p,0,)dpdp| < Cpy. (3.21)
0 0

Because ps; < 1, inside the domain of integration we have

Cp?
,0,0)] < '
l9¢(p, 0, 0)] \/(C2 —pcosp)? + (3 — psinp)?

When (2 4 ¢2)2 > 2p,, inside the domain of integration we have

V(G = peosg)?+ (G — psing)? > (G + )% —p > ps > p,
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Singularity of the velocity distribution function in molecular velocity space 15

and thus
27 Ps 27 Ps
‘/ / gc(p70,¢)dpdw( < C/ / pdpdp < wCp3. (3.22)
o Jo o Jo
When (¢35 + (%)% < 2ps, we change the variables by the following relation

rcosf = (o — pcosp,

rsinf = (3 — psin .

Since the Jacobian is 7/p, inside the domain of integration we have

r =G~ peos )2 + (G — psing)? < (¢ +(3)F +p < 3.,
and thus
27 rps 2w 3ps
‘/ / QC(IOaO’(P)d,OdsD‘ < C/ / psdrdd < 6wCp?. (3.23)
o Jo o Jo

Combining (3.22) and (3.23) proves (3.21) and (3.20), and thus the estimate
(3.19) for A} is obtained.

Next we estimate R, and Rs. Estimate for R, is readily obtained as

o0 27 B 7\—*\27ﬁ
Bl =0 [ [T ic- 6 pddp = 00

For R,, we divide Ry into Rg; and Ros whose domains of integration are p > 1
and ps; < p < 1 respectively. Ro; is bounded since vy < @ < 217 by (1.10)

when p > 1. Since vy < v(p) < 2v; when p < 1, we have
1 27
| Ras| < C/ /O [ Inpllg¢(p, 0, @) |dipdp

S0(/pj/02"|1npqu@dp>é(/pj/:“'c_mppdwdp)é “c

provided 1 < p < 2 and ¢ is the Hélder’s conjugate of p. Thus Rs is also O(1).
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To finish the proof of (3.8) for A_, it remains to show that Rs + Ry = O(1).

For this, we first study the L; norm of B%QC’ By direct calculation,
l% 26_%—i|c—@\2 (§ — p2)e_§p2< _ 71 >
¢ Oa 2 ¢ — |l V1 — a2

et St P S (3t
V- e e~ 2)

where

o =Gl _ ! (C1p + Capcos B + (3psin S
O AV e A GV )

).

To estimate %, we let

T = (pV1— a2, pacosp, pasinp).

Note that (. - T = 0; thus

(Cup + (2pos p——e + Capsin p—mas) = C-) T
V1—a? V1—a? V1—a?
Therefore,
3 =G _ (€ =6¢)- T
‘ Y da ’ IC— G ‘—" P (3:24)
Applying the triangular inequality, we have
2 2)2 2 2
(S (SR . 55
Using both (3.25) and (3.24), we can conclude
dg¢ _e2_li=eal® 1 a 1
-2 | < (Ce 17 4 + +1). 3.26
‘80[’* p(\<—<*|1/170{2 IC— ¢ )2 ) ( )

On one hand, since the integration is in the three dimensional space, we have

2 00 1
_p2 =l 4 1
e 1 4 ——5 + 1 )dadpdy < C.
/0 /0 /0 P (=g +1)dadods
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On the other hand, by the Holder’s inequality, we have

,,2 1¢=¢xl? c* 1

L e g e

<(f Jrt o pinis)

1

_e2_leml? ol )‘1

Y \dadpdo ),

(/// P ldadode

where p = 12 < 3, 2 < 2. Therefore, we obtain

/%/ / ’894 ’dadpdga<C’ (3.27)

With the above estimate (3.27) for L; norm of %gg, we estimate R3 + Ry.

We divide the domain of integration into two parts:

DH :{(Pvaﬂpﬂp € (pS,OO>, (O2S (07 75)7()0 € (0,27‘(‘)},

<
—~
s
=
~—
N
=

D ={(p;;9)|p € (ps,0), a € ( 1), 0 € (0,2m)},

and denote the individual parts of R3 and R4 by putting the corresponding suffix

as Rsg, Rag, Rsy, and Ryps. In Dy, we have % > 1. Thus, applying
(3.16), we have El(%%;s)) < C. Therefore,
|Ram| < C, (3.28)

as a consequence of (3.27). For Ryp, because of (3.17), we only need to estimate

the following integral:

) V<p)(Ts) 1
" v(p)(3 —s)\ 0
/ / / In (T) aggdadcpdp.

Using (3.26), the task reduces to estimating the following integrals:

/ I/(p)(% 5) _p2 =12 1 o
: In(———— 4 4 ———— ——dadpdp,
4H /DH o Kkp Je P I¢ = ¢l V1—aZ adeap

1_ 2 )2
e [ w0
Dy

1
— 4+ 1)dadpdp.
Kp ¢ — (i f? )
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Again by the Holder’s inequality, we have

2 —Cx 2 1
Ryl < </ e~ T p*( )adadcpdp>

a

1

_2_le=il? o b °
. e 4 4 ———)’dadod
</DH Sy ) wp)
2 1 _ 1 :
. (/ e—%p2‘1n<y(p)(2 S))|C|I/(p)(2 8>dad<pdp> < 07
Dy Kp Kp

and
1

1 _le=tl? 4 1 P P
|Ryp| < i e T T (7|<_< E + 1)Pdadpdp
H *

_2 o v(p)(5 = 8)| g v (0)(5 — 8)
.</DHe B |do¢dg0dp) <c,

Q

where a = %, b=13, c=12and p = % and ¢ = 4. Therefore, we conclude

|Run| < C. (3.29)

v)(G=2) _

Finally we deal with Rsy; and R4 together. In Djys we have pe

and thus from (3.15)

1B (2 ) <C. (3.30)

Combining with (3.17), we have

| EA (

v(p)(3 —s),
e ) — Ex(

1_
YOG =9y < (3.31)
Kpo
Thus, again using (3.26) and (3.31), we only need to estimate the following

integrals:

p2 1¢—¢x 1% C*\Q 1 (67
Rsy + R : / T pP——————— Inadadpdy,
( M 4M D |<7<*| \/1—0[2 pae

p2 e C* 1
Rsy + R / T P2 ——— + 1) Inadadpdp.
(R3m AM) . (|C*C*|2 ) ¥
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For both estimates, we apply the Holder’s inequality:

2 7*2 1 a %
"< _pT_IC i\ 2
|(Ranr + Ranm)'| < </DM€ p (K—C*\) dadpdyp

_p2_L=a? o b
: e 1 4 ——) dadpd
(/DM p ( 1—a2> P 80)

p2 _ 1¢—¢xl?

. (/ e" 17 1 p’lln a|cdadpd<p> "< C, (3.32)
D

o=

S 1C

/ _p2_le=¢i?
|(Ranr + Ranm)"| < e 1 1
D

M

1 P
2
Pl +1 dadpd<p>
<|C —G? )
,ﬁ,w 2 %
. e 1 1 p°|Inalldadpdp | < C, (3.33)
Dm

where we choose a = g <3,b:%<2,c:12andp:%<%,q:4.
Combining (3.32) and (3.33), we conclude
|Rsar + Ran| < C. (3.34)

This is the end of the proof of (3.8) for A_, and we complete the proof of

Lemma 3.1. ]

4. Further studies on F

In this section, we will investigate the dependence of variables for F', namely
F(¢) = &F(C1,¢), where ¢, = (¢34¢2)2, to conclude Lemma 2.2 from Lemma 3.1.

We will further study F', estimate it near ¢; = 0, and prove Lemma 2.3.

Definition 1.

F(¢,¢) = =G, 6) + H(GL G, (4.1)
where
Gz [ 0P _PiPiircesp?
GG, Gr) =2 / —F¢ Z+P?
(o) 0o Jo JErP?

o

5~ P? — (%2 —2(.PcospB)(1+ ?cos B)dPds, (4.2)

r
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G+c2 (2T o P cos
HG6) = 5[ apy i pra s 50
0 0 <r
5
(5 = P* = ¢ = 2 Peos B)e F*=C -2 PeosBapgg  (4.3)

The following lemma, combined with Lemma 3.1, immediately concludes

Lemma 2.2.

Lemma 4.1.

F(C1,¢2,C3) = GF(C1, G- (4.4)

Proof. In (3.2), since @ = 0, the variables (p,¢) can be viewed as the polar
coordinates for two dimensional vector ((u2, Ce3): o2 = pcos and (.3 = psin .
We introduce another polar coordinates (P, 3) centered at ((2,(3) with its north

pole in the direction e = (g— &) for the same vector:

Csa(= pcosp) = C2+Pcosﬂ§ + Psin 623
Ces(= psingp) = Cg—Pcosﬁg +Psmﬂ§2.

Changing the variables from p and ¢ to P and ( in (3.2), we obtain

2
clP ( (o
— Cg—i—P cosﬁ
/0 0 \/C1 + P2
€i+ez-pH2 _ F+P2 L2

<3 2\, T ac2+p2y 4 2
—l—Psmﬁ( )(2 p e dPdg

ecff/o%/o eaPy[C2 + P2 (@ n Pcosﬁ%

+Psm[3§3>( pz)e*dePdﬁ,

where

p* =2+ P% 4+ 2(,Pcosp.
Since sin § is antisymmetric with respect to 8 = m, the integral of terms with
(3 vanishes. By substituting p? = ¢2 + P? + 2(,.P cos /3, after a straightforward

calculation, we obtain (4.4). O
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In viewing (4.2) and (4.3), the integrand is singular at ¢, = 0 in the integrand
in both cases. However, it is removable in the following way. We rewrite (4.2)

and (4.3) as

< pt
2

P coosf)e | T (GG P AP,

2m poo
Cvar / \/W(

(4.5)

21 poo 2
H(Chcr)z/o /0 CQP\/QZ+P2(1+gcosﬁ)e_%_PQh(Q,Rﬁ)deﬂ, (4.6)

with

¢ — 25 (2¢, P cos B+(2 cos® B)

9(C1, Gy P, B) :(g - P> — (2 - 2P, cosfBle > GHP? ’

(4.7)

h(¢, P, 3) (7—P2—¢ — 2¢,Pcos B)e” 362 Peosf (4.8)

and use the Taylor expansion of g and h with respect to (, around zero to obtain

G(G g):zmlefﬁ/m PG 2P PGP et
| o \ VG+P? \/<2+7P?

51

e * i R,dPdj

27
/ /0 (1 + cosﬁ) \/W
=:G1(G1) + G2(C1, 6, (4.9)

(Clvgr 271'026 / P\/m — < P2(7 2)) AP
2m
/ / 1+—cosﬁ)czp\/<12+7p2€—%—PQthﬂdP

=:H(¢1) + H2(C1, Gr)- (4.10)
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Here Ry and Ry, are the remainder of the Taylor expansion:

R9(<17C7"7P76) ZQ(ChCraPaﬂ) - (g _P2)

+2Pcosﬂ<1 + W)g, (4.11)
RGP, 0) =h(Ge, P.B) — (5 — P?) + 2P cos (L — PG, (412)
Note that, for some 0 < ¢/ < ¢, and 0 < ¢/ < ¢y,
Ry(C1, G, P B) = ;Q(cl,c;,P,ﬁ) 2, (4.13)
RalGes P.0) = § ot G PG (1.14)

By direct calculation of these second order derivatives, we observe that both G4
and Ho are O((,); thus G and H are regular in (. as well as in (3.

Next, we notice by direct calculation of (4.2) and (4.3) with ¢; = 0 that

G(0,¢) =2 3n % (1 - g@f)(f%ﬁ, (4.15)
H(0,¢,) = —z—ﬁw—ifo(%gf)e—@, (4.16)
which yields (2.4) in Lemma 2.3.
Lemma 2.4 follows the estimates below:
Lemma 4.2. For 0< (1 < ¢ < 145
G (¢1.6) = G(C1. 6 < O — Gl + ¢ — G, (4.17)
|H(C1,¢) = H(GL G| < Cla =Gl (4.18)

Remark 4.1. Note that (4.17) is only of Holder continuous type. This is due to

the singularity of k1((,¢s), as will be clear in the proof of the lemma.

In the rest of the present section, we prove Lemma 4.2.
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Proof of Lemma 4.2. Because of the term with é, the case 0 < ¢, < 1 will be
discussed by using (4.9) and (4.10), while the case ¢, > 1 will be discussed by
using the original form, (4.2) and (4.3). Because the technical details in the proof
are similar, we will show here only the part for the case (,- > 1. The proof for the
case 0 < (, < 1 is left to Appendix A. In the proof, without loss of generality,
we assume that ¢; < (.

We start with the proof of (4.17). We denote the integrand of G by §((3, ¢, P, 5).

It is seen from the definition (4.2) that

|§(C13<T7P3/8)7@(51,CT7P75)‘ Sgla (419)
where
§1201<1+HC@fjsﬂ)‘;—Pz—Cf—QPQcosﬁ‘e_cz. (4.20)

On the other hand, by the mean value theorem

99

% , (4.21)

G1=¢;

|§(C17CT7P7ﬂ) _g(élvcr’vpaﬂ)‘ = ‘Cl - §1|

where (] is a function of ¢, P, and (3 taking a value between ¢; and ;. Thus,

by direct calculation of %g, we obtain

19(¢1, G PoB) — 3(C1, G, P B) < (G — §1|(%|§2|<1:g +1g3lei=¢;),  (4.22)

where
Jo 1+ 2¢2 cos? 3 P
= (1+ C—cosﬁ)
g3 G+ 2P + 4G, cos 8 "
5 —C—g—ﬁ—% P+, cos 8)2
~(§—P2—C3—2P§Tcosﬁ)e FE e (P e (4.23)

We divide the domain of integration into two: (0,[¢1 — (1]2) x I and (|¢; —

C1|z,00) x I, where I = (0,2n). Note that both ¢; and (; are less than &5
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Using (4.19) in the first domain and (4.22) in the second, we obtain

|G(C17 Cr) - G(é__lv Cr)l

S -
<|G = G291l oo 0,4y w1 + 12l =¢; I 21)

*10

+1¢1 = Gllgsle=¢r [ £1)- (4.24)
Below, we list the estimates for the norms in (4.24) for arbitrary 0 < (| < 155
and 1 < (-
i 11/, ¢ 251\ _1. 1
< — 2L . for0< P < —
ol < gy (645 +35p)e 9 o< P2 g,

c1(§ + P2+ G2+ 2P¢; | cos B])(1 + 2¢7 cos? B)(1 + P cos Bl 3¢,

for0 <P < Crv
|G| <
cre— 26 1000t (P=6)* (1 4 2¢2 cos? B)(1 + P)| cos B))
(3 + P2+ +2P¢ | cos B)), for P > ¢,
c1(2 + P? + (2 + 2P| cos B) (155 + 2P + 4¢,| cos B])
(1—|—P‘COSﬁ|)6_%<3, for 0 < P < ¢,
93] <

10000

0167%@7 10001 (Pfg")2(ﬁ + 2P + 4Cr| [€0)] ﬂ|)

(14 Plcos B])(§ + P? + ¢ +2(Plcos ), for P>,
which are obtained by observing (4.20) and (4.23). Note that the functions on

the right hand side above are polynomials of (., P, and |cos 3| multiplied by

1 2 1 2 10000 2
ezl or by e~z ¢ 10001 (P=¢)” | Thus, we have

1
a1 < C for0< P <
|gl| = ) or = = 107
32 C’e‘ﬂf7 for 0 < P < ¢,

<
93 CeIP=C¢I° for P> ¢,.
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Using the above inequalities, we can conclude [|g1([ (0, 1 )15 2]¢;=¢; |21, and

110)
193¢, =¢; |21 are bounded uniformly for 0 < ¢ < W and ¢, > 1. Thus, (4.17)
is established for ¢, > 1.

Next, we turn to the proof of (4.18). We denote the integrand of H by
E(Cl, ¢, P, ). Without loss of generality, we may assume that ¢; < ¢;. Applying

the mean value theorem, we have

2
(GG — HGL G| < 16— <1|// (GG P apds,

where (; < (] < (1. Calculatmg h directly and taking account of (. > 1 and

0<G < ﬁ,we have

<7

Ce 1, 0< P<G,

C (ClaCTaP ﬁ)

(P—¢p)?

Ce-—=2 , P>¢(.

1

From the above estimate, we see || %EHD is uniformly bounded for 0 < ¢} < 155

and ¢, > 1. Therefore, we obtain (4.18) for ¢, > 1. O

5. Contribution from minor terms

We have so far studied the contribution from W, the first term of (2.1) for n = 1.
Now, we are going to establish the estimates for all the four terms on the right-
hand side of (2.1) for n > 1 and conclude Lemma 2.5. We will use the following

lemma that has been established in [3].

Lemma 5.1. For 0 <a < % and k large enough (depending on a), n > 0, there

exist positive constants C, and C, and C!, depending on a, such that

1 1 1
0K (@) < C(Ca—r)"(r+ | Infs + [+ [Imls = 5[, (5.1)
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P e P e (5.2)

Cy,ln '%)"‘H,{e—alﬁlz.

K (¢n)] < Cal (5.3)
For the first term of (2.1), by using Lemma 2.1 and (5.1), we obtain

Lemma 5.2.

N

1 v_ (1 1

— ez —9)

e Flarlz = —8)0sK(pp_1)ds
K| C1]? / L (2 ) ( 1

< (|m “|<1|\+1 )(C‘lln“)n_l. (5.4)

2
K

For the second term of (2.1), by using (5.3), we have

1 _ Colnk 2
- RO K O )C ‘ < 2 —waT (7> —alc|
AGEe KO o z
C,1 n
< CQC(%) e—al¢® (5.5)
where we use the following estimate in the last inequality:
1 _ v 1 -3 1
\?e " | < ek oMG”* <0, for0< (< ot (5.6)
For the third term of (2.1), we use (5.3) and the bound
V(1<)
d ‘ <, (5.7)

to obtain

‘/1 e ¢~ iz sl ,|Z|C| S‘ (¢n—1)ds‘

11
§CC’¢;/2 |3 —3|67N‘21||%75|d8 (Ca lnm>"efa|q2 < cay (Ca lnﬁ)"eialglz.

K v K

(5.8)
Here, the boundedness of v/(n)/n for n > 0 is readily confirmed of its form that

is obtained by direct calculation:

/ 1 n 1 n
v(n) —9273 (f/ e dz — —d/ z2e_zzdz).
n nJo n° Jo
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For the last term of (2.1), we have the following estimate:

Lemma 5.3. For large enough

Cal n—1
&) ﬁe—a\ﬁlz’7 (5.9)

[} ey < cy 2

where 0 < a < %

Proof. Consider the case i = 1. Recalling the definition of k1((, s) in (1.9), by

direct calculation, we have

Ok _ 1 <(\C|2 S WA S 7) G =G UG gy g p?
oG V2m N\ 2[¢—G* 1€ — C|? ¢ — Cxl
L|C)? = 1¢)? USRI 1e_e 2

S Ver [C—GPR e e

Noting that

|61 — Gl <1,
¢ =G
and
(167 = 16)? o (Sl +16D? _ (ISl +2KD* _ 2I¢ — GJ* +8I¢)?
|§_C*|4 - |C C*|2 N |C C*|2 - |< <*|2 ’
we obtain
Ok |<|2+1 U=kl P**\C <*|2
<00+ 2—2)e  wear 5.10
% | < OO =P (510
For k2((,(s), by direct calculation, we have
k| o 3 1|¢L—Ga "
2l =931 ¢C—¢¢C CIP+IE2D
a@’ (= 1ol
< CQH[C + [gIg e 2D, (5-11)
Recalling now the estimate (5.2), for large enough
|pn—1] < Czlz(cam%)”fl(/{’l G e < ¢, lnl) e—alel?
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we have
Inky\n—1 Ok, Oka N _ 1012
) <c(c.25) /(‘—‘ —D ale:lae,. (512
| Cl (an 1 ) | K R a<1 + a<1 € C ( )

The latter term in (5.12) is readily estimated by using (5.11) as
/ ‘% e~eleldc. < / ’ak? jd¢. < CO+IGP + ek < creeieP,

To handle the former term in (5.12), we choose an orthogonal basis {e1, ez, e}
centered at ¢ with e3 = —% as the north pole and (p, 0, ¢) its spherical coordi-

nates:
(e = (+ pcosbes + psin b cos pe; + psin b sin pes.

Then, using (5.10), we have
/‘% e—ak*lzdc*
<c/ P2 [C2 4 1)e ol =G+ B o=Ielcos 0 +(a= B)IC o0 o 512
<Ce el [[(p=I¢eos)? + [ + 1
. e~ (a+3)(p=[¢| cos 0)*—(5—a)[¢|? cos® O 4. 0dpdo
< C"Che I /(|c|2 + 1)e=(Gmlcl cos® 6 iy g g,

The last integral is bounded by a positive constant for |¢| < 1, while it is bounded

by (1+[¢))(5 - a)~2 for |¢| > 1. Therefore we obtain
1 >
10¢, K (¢pn—1)] < C;, (C’ E) w1+ |C|)e <P,

The same estimate holds for the cases i = 2 and 3. Thus we conclude

[SIE

1 ,Lll,s‘
e Fal2 9, K (¢pp—_1)ds
e (K (6n1)ds|

<0 (0 Y (1 fepeeler [ :

1
2

v |1_
e N\C1|‘2 Sldg

k|G

<! (C 1%“) e=al¢ (5.13)
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Here we have used the fact from (1.10) that

1
3 1 1 v 1
13—l 7, _ ;
— ¢ N\Cll ds=—(1—e ®slal) < ———— |
I 2 REEaT)

2

O

With the estimates above, we can present the proof of Lemma 2.5, from which

Theorem 1.1 is finally established.

Proof of Lemma 2.5. Because of (1.10), we have

<12 1 12 1
a4 — a4 — ). 14
e <C(1/)’ e <C(V2) (5.14)

With these inequalities, applying (5.4), (5.5), (5.8), and (5.9) with a = 1 to
(2.1), we conclude (2.6) and (2.7). It remains to prove (2.8). We calculate a%l(bo
at r; = % directly to obtain

8¢0 1 k v 1c1?

56,0 = g GG — e
+= (1—e =) GG (I¢ — g) s
+l|%|e_“<1 C2(*—|C| )T “ie -

_Cl1€ ”<1C2(*—‘C| )™ “ie #

From (5.7) and (5.14), the first three terms on the right-hand side are bounded
by C-%;. Because of (5.6), the last term is also bounded by C'/5. Therefore, we

have (2.8). O
Finally we confirm the claim in the Remark 1.1, that is,

Lemma 5.4. If 0 < (; < -5 < 145 and [¢| = 0.5 and & large enough, then

K

G 0 1 Cl . a 1 K
08 0 — (= 0—o(= C—. 5.15
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Proof. By direct computation,

G _ -3 cosf 2l
| g+gm e 0(5:0) =1 T [‘q< —[¢P)e”
9
(1—6 & )41(( — 1K) + G = 3))
_ v 5
f%%a—e«wg@g—mﬂh
< O%, (5.16)
where we have used (5.7) and (5.14) and the fact that when || = 0.5 and
0 <1 < 1504
¢+ ¢ > 0.2499. (5.17)
Similarly,
s g0, ) = [ —

k2rl v
Jarqg oGl 7@?@62bgﬁ@< —I¢[f)em e

_r 9 ! o )
(= TENGGGICP - 5) = (- e )a6G - 1P|

=05 (5.18)
For higher order terms, we calculate directly as

G 0 1
00— n\q>
T (50

_, cost 2 1 K"l(lfs)u % .
|\/m{ /— H|C1|e : K|C| K (¢pn—1)ds

1
2

LS GNP
+ L Ee "1 8C2K(¢n—l)d5]|

2

CC’{1 Colnk., —alcl? Colnk,,_ —alcl?
< (=——=)"Gale " + CL (=) ¢ale I,

v K

(5.19)

where we have used (5.8) and (5.9) together with (5.17) to obtain the last in-

equality. Therefore, we have

| G 0 1 k Ink. .,

s sl (3.0l < O (R (520)
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and, similarly,

ANELLITESY (5.21)

V2 kK

7@ in Qi

Ja+a G

Combining estimates above, if k is large enough, we can conclude the lemma. [

1

A. Proof of (4.17) and (4.18) for 0 < ¢, <1

We discuss the continuity estimates for 0 < (- < 1 in Lemma 4.2.
We start with the proof of (4.17), treating G; and G parts in G separately.
First consider G1((1,¢.) — G1((1,¢,) and denote its integrand by A;. On one

hand, we have from (4.9)

5

) B
|A| < dmey (|2 — 2P2| +P2|§ — P2|) e P =: g. (A1)

On the other hand, by the mean value theorem, we have for some (; < ¢} < (1

2
51 pt

(5 _ 2 5+1(5 _ p2
|AL] <G — G2mere 7 EEPT| — PaG-2P)  3PGG - P

(¢ +P2)3 (¢ + P2)3
+( 2P* )C,(P(g—2P2) P5(g—P2)>’
(C{2+P2)2 1 (<{2+P2)% (C{2+P2)%
- _ Pt /15 3 /5
<Iee — (12 op2 ., 02 op2
<|G = Gif2mere (P|2 21D|JF100|2 2P7|
3 o 5 o . =L
150>+ DI = P?1) =16 = Gl (502 + 9s). (A.2)
where
— oy ThrT|2 _op?
go = 2mcie 1+ \2 2P%|, (A.3)
3 Y L )
93 = ZsTere u%(|§—2p2|+(P2+1)|5—P2|). (A.4)

We divide the domain of integration into two: (0, |¢; —¢1|2) and (|¢; — (1|2, 00).

We use the former estimate (A.1) in the first domain and the latter estimate
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(A.2) in the second to obtain

1G1(C1,¢) = Gr(G, G|
<6 = GlF (s o) + loalley ) + 16— Gl - llgsllzy, - (A5)

From the expressions in (A.1), (A.3), and (A.4), we see that Hg1||L%o(07T10),

g2l 1, and [|gs]|z1, are bounded.

Next consider Go((1, () — G2((1, () and rewrite it as

B 27 oo P
Ga(C1, ) — Gl ) = /0 /0 A01Ry(€1. G P A)(1 + L cos B)dPdg

¢t
2

pd
T Ago(1+ —

27 [e’s}
Cl_P P
+/ / . cos B)dPdg,
o Jo /(G + P? Gr )

where

it pt S
o P T2 T @2 o P T2 T @
Ay = —— g+pPz _ 1T CZ+P

A22 = Rg(<13<TaP7 ﬂ) - Rg(gla<TaP7 ﬂ)

On one hand, we obviously have

__pt
|Ag1| < cre EHP2.

(A.6)

On the other hand, again by the mean value theorem, for some (; < (] < (; we

have
72
A= G- Gl P |_aPb  PL2PE oG abg
(CP+P2)2 P14+ 2P+ (iF (¢ + P2)3
4
<Cle*<%iipz|41—§1| l4—i ) (A7)
N P ' 100

We divide the domain of integration into two: (0,[¢1 — (1]2) x I and (|¢; —

(1|2, 00) x I, where I = (0,27). We apply the former estimate (A.6) in (0, |¢; —
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=1 . . . .
(1]2) x I and the latter estimate (A.7) in the other domain. Then we obtain

’ /Ozw /0°° A (1+ C—chosﬁ)Rg(Cl, ¢ P, 6)deﬂ’

- 1
< 11 = &l (loallim o s + il n)

- 1
+ ¢ — C1|<ﬁ”g4”L1)v

where

g4(<17<7'7p7 ﬁ) = cle_c%iipz(l + ? Cosﬁ)Rg(ChgT'vPa ﬂ) (A8)

Remind that g4 contains g through R, in its definition, see (4.11) and (4.7).

P

Applying the mean value theorem to one of the terms in g:

2
é - PQ)Q_%Cg_éiﬂ(zgrpcosﬂﬂf w0 _5  pr Cr(§ — P)(
2 2 2
s — 3¢/~ Pz (2¢, P cos "2 cos?
+ W(PcOsﬂ+<; cos? g))e HS TR (P cospC 0os? 5)
1

for some 0 < ¢ < ¢, and keeping the other term in g as it is, we obtain from

(A.8)

P2 5 _ P42
gy Pl 5
1

p2 2
2 (¢r cos B+P)

gs = c1(¢ + Pcosf) (ZPCOSB[I +

[

— (¢ +2PcosBle *

5 2P2 —ﬁ—ipz ! cos P)?
—(5—PQ)[C;.—F4<12+P2(Pcosﬁ+dc032ﬂ)]e b gepr (G eosAEP) )
Therefore, because 0 < (» < 1 and 0 < (7 < ﬁ, we obtain the following

estimates for gy:

c1(1+ P cosﬂ|)(1 + 4P| cos g

Jr(g*P2)(1+4P|C086|+2COS2ﬂ)>, for 0 < P < 1,

941 < 4 26,67 16001 P* P| cos B] (1 + P|cos B]) (1 + 3 + P2)

10000

+eye 16001 (P=1*(1 4 P|cosf3])

~<1 + 2P| cos B| + (5 + P?)(1 + 2P| cos B| + 2| cosB|2)), for 1 < P,
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and see that [|g4|| ;o ; and |[g4]|z: are bounded.

170 %

As to Agy, again by the mean value theorem, we have for some (; < (] < (4

|A22| = |Rg(<17<7“7pv6) _Rg(ghgmpaﬂ”
AP35

=G — €1|‘ - Crw(* - P2) cos 3
2P3 ! . ,
+ (C/Q_A'_;}Q)QCT(2C086 + %COS2 B)Q(Clvcrvpa ﬁ)

2cos 16}

<16 - Glge (4 cos 8112 — P21+ (leos bl + 6 25 D) jg(ch, 6 PO ).

(A.9)

Similar to the case of Asy, we use the original form of Agy in (0,[¢ — Ci|2) x T

and the above estimate (A.9) in (|¢; — (1|2, 00) x I to obtain

27 2
-

_pt P
——e¢ G+P? Ay (1 + — cos B)dPd
a1 22( 2 B)dPdp

<161 = Gl (Nlgellr + 19a (s Gor s Mzoeo,yyer + 193 (G oo Ml zoe 0,1 )
+1¢1 = Gl (lgsllr + llgsllz),

where

__p*
gs = 4ar] cos |2 — P*le” T (G, + Pleos ), (A10)
S L
go = dere” T [cos BI(G, + Pleos Bg(¢h G, P ), (A1)
L.
g1 = 2sere T [cos fP(G + Pleos B)g(Ch G, P ). (A12)

We have already known that [|ga[| (0,1 ) is bounded. For g5, from (A.10) we

have

ol < 4cq|cos B](2 — P?)(1 + P|cos B]), for0< P <1,
g5] >

10000 P2

401|COSﬁ|(% + P2)(1 + P|COSﬂ|) T0001 for 1 < P.
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For ge, using ¢; > (; and (4.7), we have from the definition (A.11)

96| < dea | cos BI(Cr + P|cos 3])

W(PJ’_CT cos 3)?

_’7 PQ—( —2PCTcosﬁ|e
From this we have
10¢q | cos B)(1 + P|cos G), for0 < P <1,
96| < 4eq| cos B](1 4+ P cos 5])

(% _|_P2 +2P|COS,8|) — 10007 (P— 1)? , for P > 1.

In the same way, for g7 we have from its definition (A.12)

lg7| < 2¢1 cos® B(¢r + P|cos 3))

5 7 P+¢, cos 3)?
‘|§_ — (2 —2P¢ cosfBle <2+P2( Fercosd) )

and thus
5¢1 cos? B(1 + P|cos ), for 0 < P <1,

|97 < 4 2¢; cos? B(1 + P|cos 3])

(L + P% + 2P| cos f])e 1001 (P=D* | for 1 < P.
From these estimates, we see that ||g7||z1, ||g5|/z1, and ||gs|| 21 are bounded. This
finishes the proof of (4.17) for 0 < ¢, < 1.

Next, we turn to the proof of (4.18) for 0 < (. < 1. Consider H; part first.

By the mean value theorem, for some 61 < C~1 < (1 we have

[H1(¢1) — H1 ()

<~1(1—41— )(;—2P2+P4)eélpz P

27TCQP
0 CZ + P2

<|¢1 — ¢

= 5 9 2 _
<|¢1 — 41|/ %m(l + P?) (2 + 5P2 + P4) e P dP < C|¢1 — ¢ (A13)
0
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Here we have used the fact that 0 < (; < ﬁ.

For Hy part, by the mean value theorem, for some ¢; < ¢] < ¢; we have

|H2(Clv CT) - HQ(Ela CT)I

<|¢ - C1|//2ﬂ62P

B oo 2T
:?|C1—C1|/ / |h1 + ha|dPdp,
o Jo

kSt gle—g—fﬂ dBdp

/-2 2
C +P ¢1=¢

1—1——0086)

where
I =eall—eee (1 — (2 = PP Ry, P.),
ho P (1—¢2%= P?)Pcosfe” $-p 1Rh(€mp B).

!

=C —_——

RN G
Note that, from (4.12) and (4.8), we have

1.5 2 —3¢2_2¢,.Pcosp

~ RGP, ) = == (g =P —em )
Gr G2
— (¢ +2P cosﬁ)e*%ﬁ*%‘Pcosﬁ + 2P cos 5(; - P?)

5 ’ ’
=— (5 — P?)(3¢.. + 2P cos ﬁ)e_%@?_zgrpcosﬁ

. 7
— (¢ +2Pcos ﬂ)e*%CE*QC"PC%ﬁ + 2P cos 6(5 — P?),
for some 0 < (/. < ¢ by the mean value theorem and that
3 3 3 2 1
—5@? —2P(,cosf3 — P? = —543 sin? 3 — §(g,. cos 3 + gP)2 - §P2.
Taking these into account, we have

mec2(1+ PQ)((% — P24+2P(1 — P?)| cosﬂ|)e*P2

+(3 = P+ 2P[cosB)e #), for0 < P< 3,
|hy] <

ﬁcz(l + P?) ((% + P? + 2P| cosﬁ|)e_%P2_%(%P_1)2

+(3+P2+2P(§+P2)\cos6|)€_P2), for 3 < P,
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rhgea(1+ P2)P|cos B[ ((3 = P2)(3+ 2P| cos B])
+1+ 2P| Cosﬁ\)e_%P2 +2P(L — P?)|cos Ble=F*|,
for 0< P < %,
lha| <

Leca(1+ P2)P|cos [((g + P?)(3 + 2P| cos 3))

14 2P| cos ] )e #P° (P

—|—2P(% + P?)| cosﬁ|e_P2}, for 3 < P.

From these estimates, we see that ||h; + ha||r: is bounded and conclude

|H2(C1, Gr) — Ho(Cry Go) < CIG — Gl (A.14)

Combining (A.13) and (A.14) yields (4.18) for 0 < ¢, <1 in Lemma 4.2.
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