5 research outputs found

    Rutin as a potent antioxidant: implications for neurodegenerative disorders

    Get PDF
    A wide range of neurodegenerative diseases (NDs), including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and prion diseases, share common mechanisms such as neuronal loss, apoptosis, mitochondrial dysfunction, oxidative stress, and inflammation. Intervention strategies using plant-derived bioactive compounds have been offered as a form of treatment for these debilitating conditions, as there are currently no remedies to prevent, reverse, or halt the progression of neuronal loss. Rutin, a glycoside of the flavonoid quercetin, is found in many plants and fruits, especially buckwheat, apricots, cherries, grapes, grapefruit, plums, and oranges. Pharmacological studies have reported the beneficial effects of rutin in many disease conditions, and its therapeutic potential in several models of NDs has created considerable excitement. Here, we have summarized the current knowledge on the neuroprotective mechanisms of rutin in various experimental models of NDs. The mechanisms of action reviewed in this article include reduction of proinflammatory cytokines, improved antioxidant enzyme activities, activation of the mitogen-activated protein kinase cascade, downregulation of mRNA expression of PD-linked and proapoptotic genes, upregulation of the ion transport and antiapoptotic genes, and restoration of the activities of mitochondrial complex enzymes. Taken together, these findings suggest that rutin may be a promising neuroprotective compound for the treatment of NDs

    Combination Treatment with EGFR Inhibitor and Doxorubicin Synergistically Inhibits Proliferation of MCF-7 Cells and MDA-MB-231 Triple-Negative Breast Cancer Cells In Vitro

    No full text
    The role of the epidermal growth factor receptor (EGFR) in tumor progression and survival is often underplayed. Its expression and/or dysregulation is associated with disease advancement and poor patient outcome as well as drug resistance in breast cancer. EGFR is often overexpressed in breast cancer and particularly triple-negative breast cancer (TNBC), which currently lacks molecular targets. We examined the synergistic potential of an EGFR inhibitor (EGFRi) in combination with doxorubicin (Dox) in estrogen-positive (ER+) MCF-7 and MDA-MB-231 TNBC cell lines. The exposure of MDA-MB-231 and MCF-7 to EGFRi produced an IC50s of 6.03 µM and 3.96 µM, respectively. Dox induced MDA-MB-231 (IC50 9.67 µM) and MCF-7 (IC50 1.4 µM) cytotoxicity. Combinations of EGFRi-Dox significantly reduced the IC50 in MCF-7 (0.46 µM) and MBA-MB 231 (0.01 µM). Synergistic drug interactions in both cell lines were confirmed using the Bliss independence model. Pro-apoptotic Caspase-3/7 activation occurred in MCF-7 at 0.1–10 µM of EGFRi and Dox single treatments, whilst 1 μM Dox yielded a more potent effect on MDA-MB-231. EGFRi and Dox individually and in combination downregulated the EGFR gene expression in MCF-7 and MDA-MB-231 (p EGFR in both cell lines

    Cytotoxicity Potential of Endophytic Fungi Extracts from Terminalia catappa against Human Cervical Cancer Cells

    No full text
    Endophytic fungi are potential sources of novel bioactive metabolites from a natural product drug discovery perspective. This study reports the bioactivity-directed fractionation of the secondary metabolites of the ethyl acetate extract of a fermentation culture of endophytic fungi from Terminalia catappa which were then evaluated for their cytotoxicity against human cervical cancer (HeLa) cells and human foreskin fibroblast (HFF) cells. Furthermore, apoptosis was determined using the Annexin V/propidium iodide (PI) flow cytometry assay. Endophyte extracts N2, N7, N8, N97, N169, and N233 were obtained from Trichoderma sp, Phoma sp, Phomopsis phyllanticola, Fusarium oxyporum, Collectotrichum sp, and Cryptococcus flavescens, respectively. The N97 extract was most active with a 50% inhibitory concentration (IC50) of 33.35 µg/ml. A 50% cytotoxic concentration (CC50) of 268.4 µg/ml was obtained with HFF cells and the selectivity index (SI) was 8.01. The percentages of cell populations were increased at late apoptosis (Annexin+/PI+), with the percentages of 27.4 ± 0.3 and 19.2 ± 0.01 obtained, respectively, for 50 µg/ml and 80 µg/ml of the N97 extract and 2.1 ± 0.1 obtained for the control in late apoptosis (Annexin V+/PI+) . Moreover, a higher reduction in the percentage of viable cells was observed in the HeLa control cells (93.6 ± 0.3), but the percentages of viable HeLa cells were 37 ± 0.05 and 45 ± 0.1, respectively, for the 50 µg/ml and 80 µg/ml treatments with the N97 extract. Also, the percentages of 34.7 ± 0.1 and 33.9 ± 0.4 were, respectively, obtained for 50 µg/ml and 80 µg/ml compared to the control with 4.6 ± 0.2, in early apoptosis (Annexin V+/PI-). These findings highlight the anticancer potential of the N97 extract of endophytic fungi from Terminalia catappa, which is mediated through apoptosis and presumably also attenuation of chemoresistance
    corecore