98 research outputs found

    Transformation super plasticity deformation of reduced activation ferritic/martensitic steel

    Get PDF
    Reduced Activation Ferritic/Martensitic (RAFM) steel is a promising candidate for the blanket structural materials of fusion reactors. One of the key issues in the use of RAFM for the blanket is its low workability. As a solution of this issue, innovative processing technology based on the transformation super plasticity (TSP) was proposed. In general, TSP is known as high temperature creep deformation which is induced by phase transformation. In this study, tensile tests under constant load were carried out with cyclic temperature variation for a RAFM steel to investigate the effect of cyclic temperature variations on elongation. The result of the tensile test under constant load for the RAFM steel with cyclic temperature variations exhibited a macro-elongation to 172%. The results of the tensile tests with varying loads showed the possibility of reducing the necessary time and enhancing the controllability for the formation of RAFM steel products using TSP

    Effect of atmospheric control during MA-HIP process on mechanical properties of oxide dispersion-strengthened Cu alloy

    Get PDF
    In this study, mechanical properties of Dispersion Strengthened (DS)-Cu-Al (aluminum) and Zr (zirconium) alloys, which were fabricated by an MA-HIP method, were investigated for application to the heat sink materials of fusion reactors. The effect of air exposure before the HIP process was studied using a NIFS-Sealing Device. Cu–Al specimen with air exposure before HIP was broken during wire-electrical discharge formation. Cu–Al specimen without air exposure exhibited high fracture strength, but without yielding. Cu–Zr specimen, both with and without the exposure, yielded and exhibits elongation. An increase in yield and tensile strength by approximately 61% and 45%, respectively, were obtained for Cu–Zr specimen by avoiding air exposure. The results showed that Cu–Zr specimen is less susceptible to the atmosphere of the MA-HIP process than Cu–Al

    Moderation of Negative Oxygen Effects by Small Yttrium Addition to Low Activation Vanadium Alloys

    Get PDF
    In order to improve irradiation embrittlement of vanadium alloys for fusion reactors, yttrium (Y) has been added reducing the interstitial oxygen impurity. However Y addition can also degrade high-temperature strength, because Y could scavenge oxygen in solid solution, which is a strong hardening agent in vanadium alloys. In this study, the effect of Y addition and oxygen level on the mechanical properties was investigated from the view points of both the high-temperature strength and low temperature ductility. Y addition was suggested to moderate the hardening and embrittlement induced by oxygen impurity sustaining the high-temperature strength within an acceptable level

    Microstructure of Erbium Oxide Thin Film on SUS316 Substrate with Y₂O₃ or CeO₂ Buffer Layers Formed by MOCVD Method

    Get PDF
    Er2O3 has been known the best candidate material for insulating coating for liquid metal breeding blanket system. The formation of Er2O3 layer by MOCVD method can be succeeded on SUS316 substrate with CeO2 and Y2O3 buffer layers (100 nm and 500 nm) fabricated by RF sputtering, and their microstructures have been confirmed by SEM, TEM and STEM. The surface morphology of their layers was smaller granular structure than the previous study without buffer layer. According to cross sectional TEM (X-TEM) observation, Er2O3, CeO2/Y2O3 buffer, unknown layers and SUS substrate can be confirmed. CeO2 buffer layer has a granular structure, while Y2O3 has a columnar structure. Er2O3 layer formed on each buffer layer had finer structure without buffer layer. It has been also detected that each element does not exist so much in each layer by diffusion during fabrication according to STEM-EDS and HAADF imaging

    Microstructure of Oxide Insulator Coating before and after Thermal Cycling Test

    Get PDF
    Erbium oxide (Er2O3) was shown to be a high potential candidate for tritium permeation barrier and electrical insulator coating for advanced breeding blanket systems such as liquid Li, Li-Pb or molten-salt blankets. Recently, we succeeded to form Er2O3 coating layer on large interior surface area of metal pipe using Metal Organic Chemical Vapor Deposition (MOCVD) process. In this paper, we investigated the microstructure of Er2O3 coating layer on stainless steel 316 (SUS 316) plate before and after heat treatments with hydrogen or argon gases. From the results of TEM observations, we confirmed that Er2O3 coating layer with 700 nm thickness was formed on the SUS 316 plate and this layer was identified to poly-crystal phase because the diffraction fleck which was arranged like a ring was observed in the selected electron diffraction pattern. No macroscopic defects such as crack and peeling in Er2O3 coating layer were observed before and after thermal cycling test. The change of microstructure of the Er2O3 coating layer on before and after heat cycling test was reported

    Microstructure and mechanical properties of mechanically alloyed ODS copper alloy for fusion material application

    Get PDF
    Advanced oxide dispersion strengthened copper alloys are promising structural materials for application in divertor system of future fusion reactors due to high irradiation resistance, high thermal conductivity, and good mechanical properties. In this study, a new ODS copper including 0.42wt%Y2O3 nanosized oxide particles wasdeveloped successfully by mechanical alloying method using addition of 1 wt% Stearic acid in Ar atmosphere.Mechanical alloying resulted in decrease of crystallite size to 28 nm in concurrent with increment of dislocation density and hardness to the saturated level of × −1.7 10 m15 2 and 226HV0.1 after 48 h milling, respectively.Consolidated ODS copper by SPS and then hot roll-annealing at 900 °C/60 min showed an average grain size of 1.1 μm with a near random texture. Furthermore, TEM observations demonstrated fine semicoherent Y2O3 oxide particles distributed with a misfit parameter (δ) of 0.17 in copper matrix with an average size of 10.8 nm andinterparticle spacing of 152 nm. Finally, tensile test evaluation determined comparable mechanical properties of the annealed ODS copper (Cu-0.42wt%Y2O3) with Glidcop-Al25 including a yield strength of 272 MPa and total elongation of 12%, by two mechanisms of grain boundary strengthening and oxide particle strengthening

    Brass-texture induced grain structure evolution in room temperature rolled ODS copper

    Get PDF
    Currently, advanced ODS copper alloy is under study as a potential fusion material providing good mechanical properties. In this work, in order to develop a high performance ODS copper containing 0.5 wt% Y2O3 oxide particles, the effect of room temperature rolling and subsequent annealing on the grain structure evolution, texture development and tensile properties are studied using EBSD, TEM and tensile tests. Microstructure evolution studies show the grain structure coarsens by enhancing the Brass texture during increase of rolling reduction and a unique single crystal-like brass-texture deformed structure is achieved after 80% rolling reduction. We found the deformation mechanism of partial slip by a/6 ⟨211⟩ by dislocations facilitated by the pinning of a/2 ⟨101⟩ perfect dislocations through fine oxide particles is responsible for formation of Brass texture during room temperature rolling. Furthermore, the recrystallization of ODS copper retards to high temperature of ~700 °C and shows a fine-grained microstructure with different orientations of Goss, Brass, S and Copper. Evaluation of microstructure-mechanical properties of the recrystallized samples expresses that the bimodal grain size distribution at 800 °C for 30 min offers a good tensile strength-ductility (UTS: 491 MPa, elt: 19%) at ambient temperature

    Nd3+-activated CaF2 ceramic lasers

    Get PDF
    Nd,Y:CaF2 and Nd,La:CaF2 ceramics featuring good optical quality have been fabricated by reactive sintering and a hot isostatic pressing method. The transmission spectra, emission spectra, and fluorescence decay curves were measured. Lasing at 1064 and 1065 nm was observed in Nd,Y:CaF2 and Nd,La:CaF2, respectively, upon quasi-continuous-wave pumping by a diode laser emitting at 791 nm. To the best of our knowledge, this is the first demonstration of Nd3+-activated CaF2 ceramic laser

    Microstructure development and high tensile properties of He/H2 milled oxide dispersion strengthened copper

    Get PDF
    This study describes the effect of microstructural development on high tensile properties of a newly developed He/H2 milled oxide dispersion strengthened copper in a large centimeter sized spherical morphology. Electron back scattered diffraction showed development of a strong texture of (110) plane in micron sized (1.2 μm) grains on the surface of milled spheres. A combination of microstructural features of inhomogeneous grain size, nanoscale lenticular/rectangular deformation twins, high dislocation density and fine oxide particles distribution induced a very high ultimate tensile strength (688 MPa)-ductility (8.6% elongation)

    Microstructure development in cryogenically rolled oxide dispersion strengthened copper

    Get PDF
    Recently, advanced oxide dispersion strengthened (ODS) copper alloys have been developed using mechanical alloying process as a fusion material. In this study, to develop a superior ODS copper alloy containing 0.5wt% Y2O3, the effect of cryogenic rolling on microstructure development and tensile properties was studied using high resolution EBSD, TEM and tensile tests. During cryogenic deformation of ODS copper, grain structure remains in submicron size scale as a combinatorial result of geometrically effects, nanotwin bundle deformation, interaction of dislocations with fine oxide particles and some diffusional processes including static recovery and recrystallization. Clear microstructural characterizations confirmed nucleation of fine new oriented recrystallized grains mainly on the HABs of 80%cryogenic rolled ODS copper. Quantitative analyses indicated grain boundary migration at room temperature following cryogenic deformation originated from high driving force induced by grain boundary bulging and high mobility induced by vacancies. The tensile properties of cryogenic deformed samples showed superior tensile strength than room temperature deformation leading to UTS: 624 MPa, elt: 5.5%, while saturation of strength between 60%-80% reduction, approved occurrence of softening by diffusional processes
    • …
    corecore