147 research outputs found

    Water Quality Dynamics in a Tidal River With Groins

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Flow Structure through Groins in the Kiso River during a Flood Event

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    DArTseq-based analysis of genomic relationships among species of tribe Triticeae

    Get PDF
    Precise utilization of wild genetic resources to improve the resistance of their cultivated relatives to environmental growth limiting factors, such as salinity stress and diseases, requires a clear understanding of their genomic relationships. Although seriously criticized, analyzing these relationships in tribe Triticeae has largely been based on meiotic chromosome pairing in hybrids of wide crosses, a specialized and labourious strategy. In this study, DArTseq, an efficient genotyping-by-sequencing platform, was applied to analyze the genomes of 34 Triticeae species. We reconstructed the phylogenetic relationships among diploid and polyploid Aegilops and Triticum species, including hexaploid wheat. Tentatively, we have identified the diploid genomes that are likely to have been involved in the evolution of five polyploid species of Aegilops, which have remained unresolved for decades. Explanations which cast light on the progenitor of the A genomes and the complex genomic status of the B/G genomes of polyploid Triticum species in the Emmer and Timopheevi lineages of wheat have also been provided. This study has, therefore, demonstrated that DArTseq genotyping can be effectively applied to analyze the genomes of plants, especially where their genome sequence information are not available

    Physiological Response of Wheat to Chemical Desiccants Used to Simulate Post-Anthesis Drought Stress

    Get PDF
    Post-anthesis drought stress is one of the main constraints on the production of wheat (Triticum aestivum L.). Because field screening for post-anthesis drought tolerance is difficult, effective and validated methods to simulate drought in order to identify sources of tolerance can facilitate screening of breeding materials. Chemical desiccants are widely used to simulate post-anthesis drought stress. We aimed to identify physiological traits that respond to desiccants as they do to drought. We examined the responses of ‘Norin 61’ to six treatments in a greenhouse: irrigated control, drought after anthesis, and 2% or 4% potassium chlorate (KClO3) at anthesis (A) or grain filling (GF). We measured δ13C in leaves, aboveground fresh biomass, stomatal conductance, chlorophyll content, harvest index, and grain yield. Both 2% and 4% KClO3 at both A and GF simulated the effect of drought stress. Selection of drought-tolerant genotypes can be aided by chlorophyll content and δ13C measurement of leaves when 2% or 4% KClO3 is used to simulate drought

    Antiviral and Virucidal Activities of Nα-Cocoyl-L-Arginine Ethyl Ester

    Get PDF
    Various amino acid-derived compounds, for example, Nα-Cocoyl-L-arginine ethyl ester (CAE), alkyloxyhydroxylpropylarginine, arginine cocoate, and cocoyl glycine potassium salt (Amilite), were examined for their virucidal activities against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2), influenza A virus (IAV), and poliovirus type 1 (PV-1) in comparison to benzalkonium chloride (BKC) and sodium dodecylsulfate (SDS) as a cationic and anionic control detergent and also to other commercially available disinfectants. While these amino acid-derived compounds were all effective against HSV-1 and HSV-2, CAE and Amilite were the most effective. These two compounds were, however, not as effective against IAV, another enveloped virus, as against HSV. Cytotoxicity of CAE was weak; at 0.012%, only 5% of the cells were killed under the conditions, in which 100% cells were killed by either SDS or BKC. In addition to these direct virucidal effects, CAE inhibited the virus growth in the HSV-1- or PV-1-infected cells even at 0.01%. These results suggest a potential application of CAE as a therapeutic or preventive medicine against HSV superficial infection at body surface

    A population of wheat multiple synthetic derivatives: an effective platform to explore, harness and utilize genetic diversity of Aegilops tauschii for wheat improvement

    Get PDF
    Introducing genes from wild relatives is the best option to increase genetic diversity and discover new alleles necessary for wheat improvement. A population harboring genomic fragments from the diploid wheat progenitor Aegilops tauschii Coss. in the background of bread wheat (Triticum aestivum L.) was developed by crossing and backcrossing 43 synthetic wheat lines with the common wheat cultivar Norin 61. We named this population multiple synthetic derivatives (MSD). To validate the suitability of this population for wheat breeding and genetic studies, we randomly selected 400 MSD lines and genotyped them by using Diversity Array Technology sequencing markers. We scored black glume as a qualitative trait and heading time in two environments in Sudan as a quantitative trait. Our results showed high genetic diversity and less recombination which is expected from the nature of the population. Genome-wide association (GWA) analysis showed one QTL at the short arm of chromosome 1D different from those alleles reported previously indicating that black glume in the MSD population is controlled by new allele at the same locus. For heading time, from the two environments, GWA analysis revealed three QTLs on the short arms of chromosomes 2A, 2B and 2D and two on the long arms of chromosomes 5A and 5D. Using the MSD population, which represents the diversity of 43 Ae. tauschii accessions representing most of its natural habitat, QTLs or genes and desired phenotypes (such as drought, heat and salinity tolerance) could be identified and selected for utilization in wheat breeding

    Aegilops tauschii Introgressions Improve Physio-Biochemical Traits and Metabolite Plasticity in Bread Wheat under Drought Stress

    Get PDF
    With the aim of providing genetic materials for breeding drought-resistant wheat varieties, the physiological and metabolic plasticity of three drought-resistant wheat multiple synthetic derivative lines (MSDLs) and their backcross parent “Norin 61” (N61) were evaluated in response to drought stress. The results indicated that the D-genome introgressions from Aegilops tauschii into the MDSLs improved their drought-adaptive traits. Specifically, MNH5 and MSD345 showed higher photosynthesis rates and triose phosphate utilization than N61 under control conditions, resulting in greater accumulation of glucose and sucrose in the shoots. However, under drought stress, MNH5 and MSD345 had higher intrinsic water use efficiency than MSD53 and N61. The total antioxidant capacity and superoxide dismutase activity increased in all three MSDLs, whereas no significant changes were found in N61 in response to drought stress. Metabolome analysis identified six common drought-induced metabolites in all of the investigated genotypes. However, four metabolites (adenine, gamma aminobutyric acid, histidine, and putrescine) each specifically accumulated in an MSDL in response to drought stress, suggesting that these metabolites are important for MSDL drought resistance. In conclusion, MNH5 and MSD345 showed better adaptive responses to drought stress than MSD53 and N61, suggesting that these two MSDLs could be explored for breeding drought-resistant wheat lines

    Novel molecular marker-assisted strategy for production of wheat-Leymus mollis chromosome addition lines

    Get PDF
    Developing wheat–alien chromosome introgression lines to improve bread wheat’s resistance to stresses, such as drought, salinity stress and diseases, requires reliable markers to identify and characterize the alien chromatins. Leymus mollis is a wild relative of bread wheat resistant to salinity and economically important diseases of wheat, but its genome sequence and cytological markers are not available. We devised a molecular marker-assisted strategy for L. mollis chromosome identification and applied it to produce 10 wheat–L. mollis chromosome addition lines. Using 47 L. racemosus genome polymorphic PCR markers and DArTseq genotyping, we distinguished the L. mollis chromosomes and differentiated disomic and monosomic lines by progeny test. DArTseq genotyping generated 14,530 L. mollis SNP markers and the chromosome-specific SNP markers were used to determine the homoeologous groups of L. mollis chromosomes in the addition lines. To validate the marker-based results, genomic in situ hybridization was applied to confirm the presence and cytological status of L. mollis chromosomes in the lines. This study demonstrates that adequate molecular markers allow the production and characterization of wheat–alien addition lines without in situ hybridization, which saves considerable time and effort

    Efficient anchoring of alien chromosome segments introgressed into bread wheat by new Leymus racemosus genome-based markers

    Get PDF
    Background: The tertiary gene pool of bread wheat, to which Leymus racemosus belongs, has remained underutilized due to the current limited genomic resources of the species that constitute it. Continuous enrichment of public databases with useful information regarding these species is, therefore, needed to provide insights on their genome structures and aid successful utilization of their genes to develop improved wheat cultivars for effective management of environmental stresses. Results: We generated de novo DNA and mRNA sequence information of L. racemosus and developed 110 polymorphic PCR-based markers from the data, and to complement the PCR markers, DArT-seq genotyping was applied to develop additional 9990 SNP markers. Approximately 52% of all the markers enabled us to clearly genotype 22 wheat-L. racemosus chromosome introgression lines, and L. racemosus chromosome-specific markers were highly efficient in detailed characterization of the translocation and recombination lines analyzed. A further analysis revealed remarkable transferability of the PCR markers to three other important Triticeae perennial species: L. mollis, Psathyrostachys huashanica and Elymus ciliaris, indicating their suitability for characterizing wheat-alien chromosome introgressions carrying chromosomes of these genomes. Conclusion: The efficiency of the markers in characterizing wheat-L. racemosus chromosome introgression lines proves their reliability, and their high transferability further broadens their scope of application. This is the first report on sequencing and development of markers from L. racemosus genome and the application of DArT-seq to develop markers from a perennial wild relative of wheat, marking a paradigm shift from the seeming concentration of the technology on cultivated species. Integration of these markers with appropriate cytogenetic methods would accelerate development and characterization of wheat-alien chromosome introgression lines

    Genome-Wide Association Study of Morpho-Physiological Traits in Aegilops tauschii to Broaden Wheat Genetic Diversity

    Get PDF
    Aegilops tauschii, the D-genome donor of bread wheat, is a storehouse of genetic diversity that can be used for wheat improvement. This species consists of two main lineages (TauL1 and TauL2) and one minor lineage (TauL3). Its morpho-physiological diversity is large, with adaptations to a wide ecological range. Identification of allelic diversity in Ae. tauschii is of utmost importance for efficient breeding and widening of the genetic base of wheat. This study aimed at identifying markers or genes associated with morpho-physiological traits in Ae. tauschii, and at understanding the difference in genetic diversity between the two main lineages. We performed genome-wide association studies of 11 morpho-physiological traits of 343 Ae. tauschii accessions representing the entire range of habitats using 34,829 DArTseq markers. We observed a wide range of morpho-physiological variation among all accessions. We identified 23 marker–trait associations (MTAs) in all accessions, 15 specific to TauL1 and eight specific to TauL2, suggesting independent evolution in each lineage. Some of the MTAs could be novel and have not been reported in bread wheat. The markers or genes identified in this study will help reveal the genes controlling the morpho-physiological traits in Ae. tauschii, and thus in bread wheat even if the plant morphology is different
    corecore