634 research outputs found

    Prediction-based compensation for gate on/off latency during respiratory-gated radiotherapy

    Full text link
    During respiratory-gated radiotherapy (RGRT), gate on and off latencies cause deviations of gating windows, possibly leading to delivery of low- and high-dose radiations to tumors and normal tissues, respectively. Currently, there are no RGRT systems that have definite tools to compensate for the delays. To address the problem, we propose a framework consisting of two steps: 1) multi-step-ahead prediction and 2) prediction-based gating. For each step, we have devised a specific algorithm to accomplish the task. Numerical experiments were performed using respiratory signals of a phantom and ten volunteers, and our prediction-based RGRT system exhibited superior performance in more than a few signal samples. In some, however, signal prediction and prediction-based gating did not work well, maybe due to signal irregularity and/or baseline drift. The proposed approach has potential applicability in RGRT, and further studies are needed to verify and refine the constituent algorithms.Comment: 12 pages, 12 figures, accepted by Computational and Mathematical Methods in Medicin

    Recovery of Tsunami-Affected Paddy Soil Using Calcium Materials for Sustainable Agriculture

    Get PDF
    Symposium paper Part 2: Frontiers of sustainable rice production syste

    Formulation of objective indices to quantify machine failure risk analysis for interruptions in radiotherapy

    Get PDF
    Objectives: To evaluate the effect of interruption in radiotherapy due to machine failure in patients and medical institutions using machine failure risk analysis (MFRA). Material and methods: The risk of machine failure during treatment is assigned to three scores (biological effect, B; occurrence, O; and cost of labor and repair parts, C) for each type of machine failure. The biological patient risk (BPR) and the economic institution risk (EIR) are calculated as the product of B and O (B×O) and C and O (C×O), respectively. The MFRA is performed in two linear accelerators (linacs). Result: The multileaf collimator (MLC) fault has the highest BPR and second highest EIR. In particular, TrueBeam has a higher BPR and EIR for MLC failures. The total EIR in TrueBeam was significantly higher than that in Clinac iX. The minor interlock had the second highest BPR, whereas a smaller EIR. Meanwhile, the EIR for the LaserGuard fault was the highest, and that for the monitor chamber fault was the second highest. These machine failures occurred in TrueBeam. The BPR and EIR should be evaluated for each linac. Further, the sensitivity of the BPR, it decreased with higher T1=2 and α/β values. No relative difference is observed in the BPR for each machine failure when T1=2 and α/β were varied. Conclusion: The risk faced by patients and institutions in machine failure may be reduced using MFRA. Advances in knowledge: For clinical radiotherapy, interruption can occur from unscheduled downtime with machine failures. Interruption causes sublethal damage repair. The current study evaluated the effect of interruption in radiotherapy owing to machine failure on patients and medical institutions using a new method, that is, machine failure risk analysis
    corecore