15 research outputs found

    ACPA-negative RA consists of two genetically distinct subsets based on RF positivity in Japanese.

    Get PDF
    HLA-DRB1, especially the shared epitope (SE), is strongly associated with rheumatoid arthritis (RA). However, recent studies have shown that SE is at most weakly associated with RA without anti-citrullinated peptide/protein antibody (ACPA). We have recently reported that ACPA-negative RA is associated with specific HLA-DRB1 alleles and diplotypes. Here, we attempted to detect genetically different subsets of ACPA-negative RA by classifying ACPA-negative RA patients into two groups based on their positivity for rheumatoid factor (RF). HLA-DRB1 genotyping data for totally 954 ACPA-negative RA patients and 2,008 healthy individuals in two independent sets were used. HLA-DRB1 allele and diplotype frequencies were compared among the ACPA-negative RF-positive RA patients, ACPA-negative RF-negative RA patients, and controls in each set. Combined results were also analyzed. A similar analysis was performed in 685 ACPA-positive RA patients classified according to their RF positivity. As a result, HLA-DRB1*04:05 and *09:01 showed strong associations with ACPA-negative RF-positive RA in the combined analysis (p = 8.8×10(-6) and 0.0011, OR: 1.57 (1.28-1.91) and 1.37 (1.13-1.65), respectively). We also found that HLA-DR14 and the HLA-DR8 homozygote were associated with ACPA-negative RF-negative RA (p = 0.00022 and 0.00013, OR: 1.52 (1.21-1.89) and 3.08 (1.68-5.64), respectively). These association tendencies were found in each set. On the contrary, we could not detect any significant differences between ACPA-positive RA subsets. As a conclusion, ACPA-negative RA includes two genetically distinct subsets according to RF positivity in Japan, which display different associations with HLA-DRB1. ACPA-negative RF-positive RA is strongly associated with HLA-DRB1*04:05 and *09:01. ACPA-negative RF-negative RA is associated with DR14 and the HLA-DR8 homozygote

    Disruption of the cell wall lytic enzyme CwlO affects the amount and molecular size of poly-gamma-glutamic acid produced by Bacillus subtilis (natto)

    Get PDF
    Poly-gamma-glutamic acid (gamma PGA), a polymer of glutamic acid, is a component of the viscosity substance of natto, a traditional Japanese food made from soybeans fermented with Bacillus subtilis (natto). Here we investigate the effects of the cell wall lytic enzymes belonging to the D,L-endo-peptidases (LytE, LytF, CwlO and CwlS) on gamma PGA production by B. subtilis (natto). gamma PGA levels in a cwlO disruptant were about twofold higher than that of the wild-type strain, whereas disruption of the lytE, lytF and cwlS genes had little effect on gamma PGA production. The molecular size of gamma PGA in the cwlO disruptant was larger than that of the wild-type strain. A complementary strain was constructed by insertion of the entire cwlO gene into the amyE locus of the CwlO mutant genome, and gamma PGA production was restored to wild-type levels in this complementary strain. These results indicated that the peptidoglycan degradation enzyme, CwlO, plays an important role in gamma PGA production and affects the molecular size of gamma PGA.ArticleJOURNAL OF GENERAL AND APPLIED MICROBIOLOGY. 57(1):35-43 (2011)journal articl

    A large-scale association study identified multiple HLA-DRB1 alleles associated with ACPA-negative rheumatoid arthritis in Japanese subjects.

    Get PDF
    [Background] HLA-DRB1 is associated with rheumatoid arthritis (RA). However, it has recently been suggested that HLA-DRB1 is only associated with patients with RA who have anticitrullinated peptide/protein antibodies (ACPA), which are specific to RA. [Objective] To elucidate whether specific HLA-DR alleles are associated with ACPA-negative RA development. [Methods] HLA-DRB1 typing was carried out in 368 Japanese ACPA-negative patients with RA and 1508 healthy volunteers as the first set, followed by HLA-DRB1 typing of 501 cases and 500 controls as the second set. The HLA-DRB1 allele frequency and diplotype frequency were compared in each group, and the results of the two studies were combined to detect HLA-DRB1 alleles or diplotypes associated with ACPA-negative RA. [Results] HLA-DRB1*12:01 was identified as a novel susceptibility allele for ACPA-negative RA (p=0.000088, OR=1.72, 95% CI 1.31 to 2.26). HLA-DRB1*04:05 and *14:03 showed moderate associations with ACPA-negative RA (p=0.0063, OR=1.26, 95% CI 1.07 to 1.49 and p=0.0043, OR=1.81, 95% CI 1.20 to 2.73, respectively). The shared epitope was weakly associated with ACPA-negative RA, but no dosage effect was detected (p=0.016, OR=1.17, 95% CI 1.03 to 1.34). A combination of HLA-DRB1*12:01 and DRB1*09:01 showed a strong association with susceptibility to ACPA-negative RA (p=0.00013, OR=3.62, 95% CI 1.79 to 7.30). Homozygosity for HLA-DR8 was significantly associated with ACPA-negative RA (p=0.0070, OR=2.16, 95% CI 1.22 to 3.82). It was also found that HLA-DRB1*15:02 and *13:02 were protective against ACPA-negative RA (p=0.00010, OR=0.68, 95% CI 0.56 to 0.83 and p=0.00059, OR=0.66, 95% CI 0.52 to 0.84, respectively). [Conclusions] In this large-scale association study multiple alleles and diplotypes were found to be associated with susceptibility to, or protection against, ACPA-negative RA

    Anti-citrullinated peptide/protein antibody (ACPA)-negative RA shares a large proportion of susceptibility loci with ACPA-positive RA: A meta-analysis of genome-wide association study in a Japanese population

    Get PDF
    Introduction: Although susceptibility genes for anti-citrullinated peptide/protein antibodies (ACPA)-positive rheumatoid arthritis (RA) have been successfully discovered by genome-wide association studies (GWAS), little is known about the genetic background of ACPA-negative RA. We intended to elucidate genetic background of ACPA-negative RA. Method: We performed a meta-analysis of GWAS comprising 670 ACPA-negative RA and 16, 891 controls for 1, 948, 138 markers, followed by a replication study of the top 35 single nucleotide polymorphisms (SNPs) using 916 cases and 3, 764 controls. Inverse-variance method was applied to assess overall effects. To assess overlap of susceptibility loci between ACPA-positive and -negative RA, odds ratios (ORs) of the 21 susceptibility markers to RA in Japanese were compared between the two subsets. In addition, SNPs were stratified by the p-values in GWAS meta-analysis for either ACPA-positive RA or ACPA-negative RA to address the question whether weakly-associated genes were also shared. The correlations between ACPA-positive RA and the subpopulations of ACPA-negative RA (rheumatoid factor (RF)-positive and RF-negative subsets) were also addressed. Results: Rs6904716 in LEMD2 of the human leukocyte antigen (HLA) locus showed a borderline association with ACPA-negative RA (overall p = 5.7 × 10-8), followed by rs6986423 in CSMD1 (p = 2.4 × 10-6) and rs17727339 in FCRL3 (p = 1.4 × 10-5). ACPA-negative RA showed significant correlations of ORs with ACPA-positive RA for the 21 susceptibility SNPs and non-HLA SNPs with p-values far from significance. These significant correlations with ACPA-positive RA were true for ACPA-negative RF-positive and ACPA-negative RF-negative RA. On the contrary, positive correlations were not observed between the ACPA-negative two subpopulations. Conclusion: Many of the susceptibility loci were shared between ACPA-positive and -negative RA
    corecore