17 research outputs found

    Immunohistochemical detection of methylated histone H3 lysine 9 and histone methyltransferases and implication of their roles during skeletal cell differentiation

    Get PDF
    早大学位記番号:新6540博士(人間科学)早稲田大

    Protein related to DAN and cerberus (PRDC) inhibits osteoblastic differentiation and its suppression promotes osteogenesis in vitro.

    No full text
    Protein related to DAN and cerberus (PRDC) is a secreted protein characterized by a cysteine knot structure, which binds bone morphogenetic proteins (BMPs) and thereby inhibits their binding to BMP receptors. As an extracellular BMP antagonist, PRDC may play critical roles in osteogenesis; however, its expression and function in osteoblastic differentiation have not been determined. Here, we investigated whether PRDC is expressed in osteoblasts and whether it regulates osteogenesis in vitro. PRDC mRNA was found to be expressed in the pre-osteoblasts of embryonic day 18.5 (E18.5) mouse calvariae. PRDC mRNA expression was elevated by treatment with BMP-2 in osteoblastic cells isolated from E18.5 calvariae (pOB cells). Forced expression of PRDC using adenovirus did not affect cell numbers, whereas it suppressed exogenous BMP activity and endogenous levels of phosphorylated Smad1/5/8 protein. Furthermore, PRDC inhibited the expression of bone marker genes and bone-like mineralized matrix deposition in pOB cells. In contrast, the reduction of PRDC expression by siRNA elevated alkaline phosphatase activity, increased endogenous levels of phosphorylated Smad1/5/8 protein, and promoted bone-like mineralized matrix deposition in pOB cells. These results suggest that PRDC expression in osteoblasts suppresses differentiation and that reduction of PRDC expression promotes osteogenesis in vitro. PRDC is accordingly identified as a potential novel therapeutic target for the regulation of bone formation

    Nemo-like kinase (NLK) expression in osteoblastic cells and suppression of osteoblastic differentiation.

    No full text
    Mitogen-activated protein kinases (MAPKs) regulate proliferation and differentiation in osteoblasts. The vertebral homologue of nemo, nemo-like kinase (NLK), is an atypical MAPK that targets several signaling components, including the T-cell factor/lymphoid enhancer factor (TCF/Lef1) transcription factor. Recent studies have shown that NLK forms a complex with the histone H3-K9 methyltransferase SETDB1 and suppresses peroxisome proliferator-activated receptor (PPAR)-gamma:: action in the mesenchymal cell line ST2. Here we investigated whether NLK regulates osteoblastic differentiation. We showed that NLK mRNA is expressed in vivo in osteoblasts at embryonic day 18.5 (E18.5) mouse calvariae. By using retrovirus vectors, we performed forced expression of NLK in primary calvarial osteoblasts (pOB cells) and the mesenchymal cell line ST2. Wild-type NLK (NLK-WT) suppressed alkaline phosphatase activity and expression of bone marker genes such as alkaline phosphatase, type I procollagen, runx2, osterix, steopontin and osteocalcin in these cells. NLK-WT also decreased type I collagen protein expression in pOB and ST2 cells. Furthermore, mineralized nodule formation was reduced in pOB cells overexpressing NLK-WT. In contrast, kinase-negative form of NLK (NLK-KN) did not suppress or partially suppress ALP activity and bone marker gene expression in pOB and ST2 cells. NLK-KN did not suppress nodule formation in pOB cells. In addition to forced expression, suppression of endogenous NLK expression by siRNA increased bone marker gene expression in pOB and ST2 cells. Finally, transcriptional activity analysis of gene promoters revealed that NLK-WT suppressed Wnt1 activation of TOP flash promoter and Runx2 activation of the osteocalcin promoter. Taken together, these results suggest that NLK negatively regulates osteoblastic differentiation

    G9a is involved in the regulation of cranial bone formation through activation of Runx2 function during development

    No full text
    The methyltransferase G9a was originally isolated as a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9 (H3K9) to a dimethylated state (H3K9me2). Recent studies have revealed that G9a has multiple functions in various cells, including osteoblasts. Here, we investigated G9a function during cranial bone formation. Crossing Sox9-cre with G9aflox/flox (fl/fl) mice generated conditional knockout mice lacking G9a expression in Sox9-positive neural crest-derived bone cells. Sox9-Cre/G9afl/fl mice showed severe hypo-mineralization of cranial vault bones, including defects in nasal, frontal, and parietal bones with opened fontanelles. Cell proliferation was inhibited in G9a-deleted calvarial bone tissues. Expression levels of bone marker genes, i.e., alkaline phosphatase and osteocalcin, were suppressed, whereas Runx2 expression was not significantly decreased in those tissues. In vitro experiments using G9a-deleted calvarial osteoblasts showed decreased cell proliferation after G9a deletion. In G9a-deleted osteoblasts, expression levels of fibroblast growth factor receptors and several cyclins were suppressed. Moreover, the expression of bone marker genes was decreased, whereas Runx2 expression was not altered by G9a deletion in vitro. G9a enhanced the transcriptional activity of Runx2, whereas siRNA targeting G9a inhibited the transcriptional activity of Runx2 in C3H10T1/2 mesenchymal cells. We confirmed the direct association of endogenous Runx2 with G9a. Chromatin immunoprecipitation experiments showed that G9a bound to Runx2-target regions in promoters in primary osteoblasts. Furthermore, Runx2 binding to the osteocalcin promoter was abrogated in G9-deleted osteoblasts. These results suggest that G9a regulates proliferation and differentiation of cranial bone cells through binding to and activating Runx2
    corecore