383 research outputs found

    Transaction Pattern and Liquidity Parameters (in Japanese)

    Get PDF
    This paper introduces probability which represents symmetry transaction pattern into Roll [1984] and shows that the second autocorrelation for stockfs return is not necessarily zero. Glosten/Harris [1988] considers trader who symmetrically trades as information trader. Then I examine the relation between probability which represents symmetry transaction pattern and liquidity parameter (effective spread, average volume). The result are consistent with Glosten/Harris [1988].autocorrelationCeffective spreadCliquidity

    Intracellular oxygen tension limits muscle contraction-induced change in muscle oxygen consumption under hypoxic conditions during Hb-free perfusion.

    Get PDF
    Under acute hypoxic conditions, the muscle oxygen uptake (mV˙O2) during exercise is reduced by the restriction in oxygen-supplied volume to the mitochondria within the peripheral tissue. This suggests the existence of a factor restricting the mV˙O2 under hypoxic conditions at the peripheral tissue level. Therefore, this study set out to test the hypothesis that the restriction in mV˙O2 is regulated by the net decrease in intracellular oxygen tension equilibrated with myoglobin oxygen saturation (∆PmbO2) during muscle contraction under hypoxic conditions. The hindlimb of male Wistar rats (8 weeks old, n = 5) was perfused with hemoglobin-free Krebs-Henseleit buffer equilibrated with three different fractions of O2 gas: 95.0%O2, 71.3%O2, and 47.5%O2 The deoxygenated myoglobin (Mb) kinetics during muscle contraction were measured under each oxygen condition with a near-infrared spectroscopy. The ∆[deoxy-Mb] kinetics were converted to oxygen saturation of myoglobin (SmbO2), and the PmbO2 was then calculated based on the SmbO2 and the O2 dissociation curve of the Mb. The SmbO2 and PmbO2 at rest decreased with the decrease in O2 supply, and the muscle contraction caused a further decrease in SmbO2 and PmbO2 under all O2 conditions. The net increase in mV˙O2 from the muscle contraction (∆mV˙O2) gradually decreased as the ∆PmbO2 decreased during muscle contraction. The results of this study suggest that ΔPmbO2 is a key determinant of the ΔmV˙O2

    Detection of vitellogenin incorporation into zebrafish oocytes by FITC fluorescence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large volumes of lymph can be collected from the eye-sacs of bubble-eye goldfish. We attempted to induce vitellogenin (Vtg) in the eye-sac lymph of bubble-eye goldfish and develop a method for visualizing Vtg incorporation by zebrafish oocytes using FITC-labeling.</p> <p>Methods</p> <p>Estrogen efficiently induced Vtg in the eye-sac lymph of goldfish. After FITC-labeled Vtg was prepared, it was injected into mature female zebrafish.</p> <p>Results</p> <p>Incorporation of FITC-labeled Vtg by zebrafish oocytes was detected in <it>in vivo </it>and <it>in vitro </it>experiments. The embryos obtained from zebrafish females injected with FITC-labeled Vtg emitted FITC fluorescence from the yolk sac and developed normally.</p> <p>Conclusion</p> <p>This method for achieving Vtg incorporation by zebrafish oocytes could be useful in experiments related to the development and endocrinology of zebrafish oocytes.</p

    Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    Get PDF
    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle

    Contribution of <i>sox9b</i> to pigment cell formation in medaka fish

    Get PDF
    SoxE-type transcription factors, Sox10 and Sox9, are key regulators of the development of neural crest cells. Sox10 specifies pigment cell, glial, and neuronal lineages, whereas Sox9 is reportedly closely associated with skeletogenic lineages in the head, but its involvement in pigment cell formation has not been investigated genetically. Thus, it is not fully understood whether or how distinctly these genes as well as their paralogs in teleosts are subfunctionalized. We have previously shown using the medaka fish Oryzias latipes that pigment cell formation is severely affected by the loss of sox10a, yet unaffected by the loss of sox10b. Here we aimed to determine whether Sox9 is involved in the specification of pigment cell lineage. The sox9b homozygous mutation did not affect pigment cell formation, despite lethality at the early larval stages. By using sox10a, sox10b, and sox9b mutations, compound mutants were established for the sox9b and sox10 genes and pigment cell phenotypes were analyzed. Simultaneous loss of sox9b and sox10a resulted in the complete absence of melanophores and xanthophores from hatchlings and severely defective iridophore formation, as has been previously shown for sox10a −/−; sox10b −/− double mutants, indicating that Sox9b as well as Sox10b functions redundantly with Sox10a in pigment cell development. Notably, leucophores were present in sox9b −/−; sox10a −/− and sox10a −/−; sox10b −/− double mutants, but their numbers were significantly reduced in the sox9b −/−; sox10a −/− mutants. These findings highlight that Sox9b is involved in pigment cell formation, and plays a more critical role in leucophore development than Sox10b.</p

    Phototropism in Hypocotyls of Radish

    Full text link

    Fish mesonephric model of polycystic kidney disease in medaka (Oryzias latipes) pc mutant

    Get PDF
    Fish mesonephric model of polycystic kidney disease in medaka (Oryzias latipes) pc mutant.BackgroundPolycystic kidney disease (PKD) is a common hereditary disease. A number of murine and zebrafish mutants have been generated and used for the study of PKD as metanephric and pronephric models, respectively. Here, we report a medaka (Oryzias latipes) mutant that develops numerous cysts in the kidney in adulthood fish in an autosomal-recessive manner as a mesonephric model of PKD.MethodsThe phenotypes of the medaka pc mutant were described in terms of morphologic, histologic, and ultrastructural features. The pc see-through stock was produced by crossing a pc mutant and a fish from the see-through stock and used for observing the kidney through the transparent body wall of a live fish.ResultsThe mutant developed bilateral massive enlargement of the kidney in adulthood. They sexually matured normally within 2 months of age and died within 6 months of age. The affected kidney was occupied by numerous, fluid-filled cysts, which were lined by attenuated squamous epithelial cells. Developmentally, cystic formation began in the pronephros in 10-day-old fry and in the mesonephros in 20-day-old fry at the microscopic level. The pc see-through stock was useful in observing disease progression in live fish.ConclusionThe kidney disorder that develops in the medaka pc mutant is a mesonephric counterpart of PKD, particularly an autosomal-dominant PKD, based on its morphologic, histologic, and ultrastructural features, and slow progression

    Quantification of myoglobin deoxygenation and intracellular partial pressure of O2 during muscle contraction during haemoglobin-free medium perfusion

    Get PDF
    金沢大学人間社会研究域人間科学系Although the O2 gradient regulates O2 flux from the capillary into the myocyte to meet the energy demands of contracting muscle, intracellular O2 dynamics during muscle contraction remain unclear. Our hindlimb perfusion model allows the determination of intracellular myoglobin (Mb) saturation () and intracellular oxygen tension of myoglobin () in contracting muscle using near infrared spectroscopy (NIRS). The hindlimb of male Wistar rats was perfused from the abdominal aorta with a well-oxygenated haemoglobin-free Krebs-Henseleit buffer. The deoxygenated Mb (Δ[deoxy-Mb]) signal was monitored by NIRS. Based on the value of Δ[deoxy-Mb], and were calculated, and the time course was evaluated by an exponential function model. Both and started to decrease immediately after the onset of contraction. The steady-state values of and progressively decreased with relative work intensity or muscle oxygen consumption. At the maximal twitch rate, and were 49% and 2.4 mmHg, respectively. Moreover, the rate of release of O2 from Mb at the onset of contraction increased with muscle oxygen consumption. These results suggest that at the onset of muscle contraction, Mb supplies O2 during the steep decline in, which expands the O2 gradient to increase the O2 flux to meet the increased energy demands. © 2010 The Physiological Society
    corecore