3 research outputs found
Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells
<p>Abstract</p> <p>Background</p> <p>Interactions between the immune response and brain functions such as olfactory, auditory, and visual sensations are likely. This study investigated the effect of sounds on alloimmune responses in a murine model of cardiac allograft transplantation.</p> <p>Methods</p> <p>Naïve CBA mice (H2<sup>k</sup>) underwent transplantation of a C57BL/6 (B6, H2<sup>b</sup>) heart and were exposed to one of three types of music--opera (<it>La Traviata</it>), classical (Mozart), and New Age (Enya)--or one of six different single sound frequencies, for 7 days. Additionally, we prepared two groups of CBA recipients with tympanic membrane perforation exposed to opera for 7 days and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment). An adoptive transfer study was performed to determine whether regulatory cells were generated in allograft recipients. Immunohistochemical, cell-proliferation, cytokine, and flow cytometry assessments were also performed.</p> <p>Results</p> <p>CBA recipients of a B6 cardiac graft that were exposed to opera music and Mozart had significantly prolonged allograft survival (median survival times [MSTs], 26.5 and 20 days, respectively), whereas those exposed to a single sound frequency (100, 500, 1000, 5000, 10,000, or 20,000 Hz) or Enya did not (MSTs, 7.5, 8, 9, 8, 7.5, 8.5 and 11 days, respectively). Untreated, CBA mice with tympanic membrane perforations and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment) rejected B6 cardiac grafts acutely (MSTs, 7, 8 and 8 days, respectively). Adoptive transfer of whole splenocytes, CD4<sup>+ </sup>cells, or CD4<sup>+</sup>CD25<sup>+ </sup>cells from opera-exposed primary allograft recipients resulted in significantly prolonged allograft survival in naive secondary recipients (MSTs, 36, 68, and > 100 days, respectively). Proliferation of splenocytes, interleukin (IL)-2 and interferon (IFN)-γ production was suppressed in opera-exposed mice, and production of IL-4 and IL-10 from opera-exposed transplant recipients increased compared to that from splenocytes of untreated recipients. Flow cytometry studies showed an increased CD4<sup>+</sup>CD25<sup>+ </sup>Forkhead box P3 (Foxp3)<sup>+ </sup>cell population in splenocytes from those mice.</p> <p>Conclusion</p> <p>Our findings indicate that exposure to opera music, such as La traviata, could affect such aspects of the peripheral immune response as generation of regulatory CD4<sup>+</sup>CD25<sup>+ </sup>cells and up-regulation of anti-inflammatory cytokines, resulting in prolonged allograft survival.</p
Renal allograft rejection is prevented by adoptive transfer of anergic T cells in nonhuman primates
Anergic T cells generated ex vivo are reported to have immunosuppressive effects in vitro and in vivo. Here, we tested this concept in nonhuman primates. Alloreactive T cells were rendered anergic ex vivo by coculture with donor alloantigen in the presence of anti-CD80/CD86 mAbs before adoptive transfer via renal allograft to rhesus monkey recipients. The recipients were briefly treated with cyclophosphamide and cyclosporine A during the preparation of the anergic cells. Thirteen days after renal transplantation, the anergic T cells were transferred to the recipient, after which no further immunosuppressive agents were administered. Rejection-free survival was prolonged in all treated recipients, and 3 of 6 animals survived long term (410–880 days at study’s end). In the long-surviving recipients, proliferative responses against alloantigen were inhibited in a donor-specific manner, and donor-type, but not third-party, skin allografts were also accepted, which demonstrated that antigen-specific tolerance had been induced. We conclude that anergic T cells generated ex vivo by blocking CD28/B7 costimulation can suppress renal allograft rejection after adoptive transfer in nonhuman primates. This strategy may be applicable to the design of safe clinical trials in humans