268 research outputs found

    Toxin-Induced and Genetic Animal Models of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a common progressive neurodegenerative disorder. The major pathological hallmarks of PD are the selective loss of nigrostriatal dopaminergic neurons and the presence of intraneuronal aggregates termed Lewy bodies (LBs), but the pathophysiological mechanisms are not fully understood. Epidemiologically, environmental neurotoxins such as pesticides are promising candidates for causative factors of PD. Oxidative stress and mitochondrial dysfunction induced by these toxins could contribute to the progression of PD. While most cases of PD are sporadic, specific mutations in genes that cause familial forms of PD have led to provide new insights into its pathogenesis. This paper focuses on animal models of both toxin-induced and genetically determined PD that have provided significant insight for understanding this disease. We also discuss the validity, benefits, and limitations of representative models

    SIRT1 regulates the neurogenic potential of neural precursors in the adult subventricular zone and hippocampus

    Get PDF
    Within the two neurogenic niches of the adult mammalian brain, i.e., the subventricular zone lining the lateral ventricle and the subgranular zone of the hippocampus, there exist distinct populations of proliferating neural precursor cells that differentiate to generate new neurons. Numerous studies have suggested that epigenetic regulation by histone-modifying proteins is important in guiding precursor differentiation during development; however, the role of these proteins in regulating neural precursor activity in the adult neurogenic niches remains poorly understood. Here we examine the role of an NAD+-dependent histone deacetylase, SIRT1, in modulating the neurogenic potential of neural precursors in the neurogenic niches of the adult mouse brain. We show that SIRT1 is expressed by proliferating adult subventricular zone and hippocampal neural precursors, although its transcript and protein levels are dramatically reduced during neural precursor differentiation. Utilizing a lentiviral-mediated delivery strategy, we demonstrate that abrogation of SIRT1 signaling by RNAi does not affect neural precursor numbers or their proliferation. However, SIRT1 knock down results in a significant increase in neuronal production in both the subventricular zone and the hippocampus. In contrast, enhancing SIRT1 signaling either through lentiviral-mediated SIRT1 overexpression or through use of the SIRT1 chemical activator Resveratrol prevents adult neural precursors from differentiating into neurons. Importantly, knock down of SIRT1 in hippocampal precursors in vivo, either through RNAi or through genetic ablation, promotes their neurogenic potential. These findings highlight SIRT1 signaling as a negative regulator of neuronal differentiation of adult subventricular zone and hippocampal neural precursors

    Baculovirus Infection Triggers a Shift from Amino Acid Starvation-Induced Autophagy to Apoptosis

    Get PDF
    Autophagy plays a central role in regulating important cellular functions such as cell survival during starvation and control of infectious pathogens. On the other hand, many pathogens have evolved mechanisms of inhibition of autophagy such as blockage of the formation of autophagosomes or the fusion of autophagosomes with lysosomes. Baculoviruses are important insect pathogens for pest control, and autophagy activity increases significantly during insect metamorphosis. However, it is not clear whether baculovirus infection has effects on the increased autophagy. In the present study, we investigated the effects of the Autographa californica nucleopolyhedrovirus (AcMNPV) infection on autophagy in SL-HP cell line from Spodoptera litura induced under amino acid deprivation. The results revealed that AcMNPV infection did not inhibit autophagy but triggered apoptosis under starvation pressure. In the early stage of infection under starvation, mitochondrial dysfunction was detected, suggesting the organelles might be involved in cell apoptosis. The semi-quantitative PCR assay revealed that the expression of both p35 and ie-1 genes of AcMNPV had no significant difference between the starved and unstarved SL-HP cells. The western blot analysis showed that no cleavage of endogenous Atg6 occurred during the process of apoptosis in SL-HP cells. These data demonstrated that some permissive insect cells may defend baculovirus infection via apoptosis under starvation and apoptosis is independent of the cleavage of Atg6 in SL-HP cells

    Schwann-Spheres Derived from Injured Peripheral Nerves in Adult Mice - Their In Vitro Characterization and Therapeutic Potential

    Get PDF
    Multipotent somatic stem cells have been identified in various adult tissues. However, the stem/progenitor cells of the peripheral nerves have been isolated only from fetal tissues. Here, we isolated Schwann-cell precursors/immature Schwann cells from the injured peripheral nerves of adult mice using a floating culture technique that we call “Schwann-spheres." The Schwann-spheres were derived from de-differentiated mature Schwann cells harvested 24 hours to 6 weeks after peripheral nerve injury. They had extensive self-renewal and differentiation capabilities. They strongly expressed the immature-Schwann-cell marker p75, and differentiated only into the Schwann-cell lineage. The spheres showed enhanced myelin formation and neurite growth compared to mature Schwann cells in vitro. Mature Schwann cells have been considered a promising candidate for cell-transplantation therapies to repair the damaged nervous system, whereas these “Schwann-spheres" would provide a more potential autologous cell source for such transplantation

    In Vitro Cellular Adaptations of Indicators of Longevity in Response to Treatment with Serum Collected from Humans on Calorie Restricted Diets

    Get PDF
    Calorie restriction (CR) produces several health benefits and increases lifespan in many species. Studies suggest that alternate-day fasting (ADF) and exercise can also provide these benefits. Whether CR results in lifespan extension in humans is not known and a direct investigation is not feasible. However, phenotypes observed in CR animals when compared to ad libitum fed (AL) animals, including increased stress resistance and changes in protein expression, can be simulated in cells cultured with media supplemented with blood serum from CR and AL animals. Two pilot studies were undertaken to examine the effects of ADF and CR on indicators of health and longevity in humans. In this study, we used sera collected from those studies to culture human hepatoma cells and assessed the effects on growth, stress resistance and gene expression. Cells cultured in serum collected at the end of the dieting period were compared to cells cultured in serum collected at baseline (before the dieting period). Cells cultured in serum from ADF participants, showed a 20% increase in Sirt1 protein which correlated with reduced triglyceride levels. ADF serum also induced a 9% decrease in proliferation and a 25% increase in heat resistance. Cells cultured in serum from CR participants induced an increase in Sirt1 protein levels by 17% and a 30% increase in PGC-1α mRNA levels. This first in vitro study utilizing human serum to examine effects on markers of health and longevity in cultured cells resulted in increased stress resistance and an up-regulation of genes proposed to be indicators of increased longevity. The use of this in vitro technique may be helpful for predicting the potential of CR, ADF and other dietary manipulations to affect markers of longevity in humans

    Opposing Effects of Sirtuins on Neuronal Survival: SIRT1-Mediated Neuroprotection Is Independent of Its Deacetylase Activity

    Get PDF
    Background: Growing evidence suggests that sirtuins, a family of seven distinct NAD-dependent enzymes, are involved in the regulation of neuronal survival. Indeed, SIRT1 has been reported to protect against neuronal death, while SIRT2 promotes neurodegeneration. The effect of SIRTs 3–7 on the regulation of neuronal survival, if any, has yet to be reported. Methodology and Principal Findings: We examined the effect of expressing each of the seven SIRT proteins in healthy cerebellar granule neurons (CGNs) or in neurons induced to die by low potassium (LK) treatment. We report that SIRT1 protects neurons from LK-induced apoptosis, while SIRT2, SIRT3 and SIRT6 induce apoptosis in otherwise healthy neurons. SIRT5 is generally localized to both the nucleus and cytoplasm of CGNs and exerts a protective effect. In a subset of neurons, however, SIRT5 localizes to the mitochondria and in this case it promotes neuronal death. Interestingly, the protective effect of SIRT1 in neurons is not reduced by treatments with nicotinamide or sirtinol, two pharmacological inhibitors of SIRT1. Neuroprotection was also observed with two separate mutant forms of SIRT1, H363Y and H355A, both of which lack deacetylase activity. Furthermore, LK-induced neuronal death was not prevented by resveratrol, a pharmacological activator of SIRT1, at concentrations at which it activates SIRT1. We extended our analysis to HT-22 neuroblastoma cells which can be induced to die by homocysteic acid treatment. While the effects of most of the SIRT proteins were similar to that observed in CGNs, SIRT6 was modestly protective against homocysteic acid toxicity in HT-22 cells. SIRT5 was generally localized in th
    corecore