109 research outputs found

    Influence of Columnar Microstructure on Ultrasonic Backscattering

    Get PDF
    Most structural materials are polycrystalline, that is, they are composed of numerous discrete grains, each having a regular, crystalline atomic structure. The elastic properties of the grains are anisotropic and their crystallographic axes are differently oriented. When an ultrasonic wave propagates through such a polycrystalline aggregate, it is scattered at the grain boundaries. The fraction of sound energy thus removed from the main beam is responsible for important phenomenons like attenuation and dispersion of the main beam, and background “noise” associated with a given ultrasonic inspection system. The amount of sound energy removed from the main beam depends on the size, shape, and orientation distributions of the grains. If the grains are equiaxed and randomly oriented, propagation direction of the ultrasonic wave has no effect upon the magnitude of the scattered energy. Such is not the case when an acoustic wave travels through materials like centrifugally cast stainless steel and austenitic stainless steel welds, which are used extensively in nuclear power plants. The microstructures of these stainless steels vary from randomly oriented, equiaxed grains to highly oriented, columnar grains.1,2 Since the backscattered signals tend to mask the signals from small and subtle defects, the estimation of probability of detection of such defects requires quantitative description of these signals. Consequently, an effort has been undertaken in this research to quantify the backscattered signals from microstructures with favored grain orientation and grain elongation

    Global identification of functional microRNA-mRNA interactions in Drosophila

    Get PDF
    MicroRNAs (miRNAs) are key mediators of post-transcriptional gene expression silencing. So far, no comprehensive experimental annotation of functional miRNA target sites exists in Drosophila. Here, we generated a transcriptome-wide in vivo map of miRNA-mRNA interactions in Drosophila melanogaster, making use of single nucleotide resolution in Argonaute1 (AGO1) crosslinking and immunoprecipitation (CLIP) data. Absolute quantification of cellular miRNA levels presents the miRNA pool in Drosophila cell lines to be more diverse than previously reported. Benchmarking two CLIP approaches, we identify a similar predictive potential to unambiguously assign thousands of miRNA-mRNA pairs from AGO1 interaction data at unprecedented depth, achieving higher signal-to-noise ratios than with computational methods alone. Quantitative RNA-seq and sub-codon resolution ribosomal footprinting data upon AGO1 depletion enabled the determination of miRNA-mediated effects on target expression and translation. We thus provide the first comprehensive resource of miRNA target sites and their quantitative functional impact in Drosophila

    Dynamic Behavior in Piezoresponse Force Microscopy

    Full text link
    Frequency dependent dynamic behavior in Piezoresponse Force Microscopy (PFM) implemented on a beam-deflection atomic force microscope (AFM) is analyzed using a combination of modeling and experimental measurements. The PFM signal comprises contributions from local electrostatic forces acting on the tip, distributed forces acting on the cantilever, and three components of the electromechanical response vector. These interactions result in the bending and torsion of the cantilever, detected as vertical and lateral PFM signals. The relative magnitudes of these contributions depend on geometric parameters of the system, the stiffness and frictional forces of tip-surface junction, and operation frequencies. The dynamic signal formation mechanism in PFM is analyzed and conditions for optimal PFM imaging are formulated. The experimental approach for probing cantilever dynamics using frequency-bias spectroscopy and deconvolution of electromechanical and electrostatic contrast is implemented.Comment: 65 pages, 15 figures, high quality version available upon reques

    FACT sets a barrier for cell fate reprogramming in Caenorhabditis elegans and human cells

    Get PDF
    The chromatin regulator FACT (facilitates chromatin transcription) is essential for ensuring stable gene expression by promoting transcription. In a genetic screen using Caenorhabditis elegans, we identified that FACT maintains cell identities and acts as a barrier for transcription factor-mediated cell fate reprogramming. Strikingly, FACT's role as a barrier to cell fate conversion is conserved in humans as we show that FACT depletion enhances reprogramming of fibroblasts. Such activity is unexpected because FACT is known as a positive regulator of gene expression, and previously described reprogramming barriers typically repress gene expression. While FACT depletion in human fibroblasts results in decreased expression of many genes, a number of FACT-occupied genes, including reprogramming-promoting factors, show increased expression upon FACT depletion, suggesting a repressive function of FACT. Our findings identify FACT as a cellular reprogramming barrier in C. elegans and humans, revealing an evolutionarily conserved mechanism for cell fate protection

    Elastic interactions of active cells with soft materials

    Full text link
    Anchorage-dependent cells collect information on the mechanical properties of the environment through their contractile machineries and use this information to position and orient themselves. Since the probing process is anisotropic, cellular force patterns during active mechanosensing can be modelled as anisotropic force contraction dipoles. Their build-up depends on the mechanical properties of the environment, including elastic rigidity and prestrain. In a finite sized sample, it also depends on sample geometry and boundary conditions through image strain fields. We discuss the interactions of active cells with an elastic environment and compare it to the case of physical force dipoles. Despite marked differences, both cases can be described in the same theoretical framework. We exactly solve the elastic equations for anisotropic force contraction dipoles in different geometries (full space, halfspace and sphere) and with different boundary conditions. These results are then used to predict optimal position and orientation of mechanosensing cells in soft material.Comment: Revtex, 38 pages, 8 Postscript files included; revised version, accepted for publication in Phys. Rev.

    Quasi Two-dimensional Transfer of Elastic Waves

    Full text link
    A theory for multiple scattering of elastic waves is presented in a random medium bounded by two ideal free surfaces, whose horizontal size is infinite and whose transverse size is smaller than the mean free path of the waves. This geometry is relevant for seismic wave propagation in the Earth crust. We derive a time-dependent, quasi-2D radiative transfer equation, that describes the coupling of the eigenmodes of the layer (surface Rayleigh waves, SH waves, and Lamb waves). Expressions are found that relate the small-scale fluctuations to the life time of the modes and to their coupling rates. We discuss a diffusion approximation that simplifies the mathematics of this model significantly, and which should apply at large lapse times. Finally, coherent backscattering is studied within the quasi-2D radiative transfer equation for different source and detection configurations.Comment: REVTeX, 36 pages with 10 figures. Submitted to Phys. Rev.
    • …
    corecore