2,729 research outputs found

    GRB progenitors at low metallicities

    Get PDF
    We calculated pre-supernova evolution models of single rotating massive stars. These models reproduce observations during the early stages of the evolution very well, in particular Wolf--Rayet (WR) populations and ratio between type II and type Ib,c supernovae at different metallicities (Z). Using these models we found the following results concerning long and soft gamma--ray burst (GRB) progenitors: - GRBs coming from WO--type (SNIc) WR stars are only produced at low Z (LMC or lower). - The upper metallicity limit for GRBs is reduced to Z ~ 0.004 (SMC) when the effects of magnetic fields are included. - GRBs are predicted from the second (and probably the first) stellar generation onwards.Comment: 5 pages, 1 figure, to appear in the proceedings of "Swift and GRBs: Unveiling the Relativistic Universe", San Servolo, Venice, 5-9 June 200

    Very Massive Stars and the Eddington Limit

    Get PDF
    We use contemporary evolutionary models for Very Massive Stars (VMS) to assess whether the Eddington limit constrains the upper stellar mass limit. We also consider the interplay between mass and age for the wind properties and spectral morphology of VMS, with reference to the recently modified classification scheme for O2-3.5If*/WN stars. Finally, the death of VMS in the local universe is considered in the context of pair instability supernovae.Comment: 6 pages, 4 figures, from "Four Decades of Massive Star Research" (Quebec, Jul 2011), ASP Conf Ser, in press (L. Drissen, C. Robert, N. St-Louis, A.F.J. Moffat, eds.

    FLOOD EASEMENTS

    Get PDF
    We examine the efficiency of current flood risk allocation and the use of flood easements as a means of reallocating flood risk and reducing total flood damages in large river floodplains. Changes in agricultural floodplain land use and levels of crop insurance coverage as the risk of flooding changes are simulated using mathematical programming. The net benefits of flood easements to a portion of the Lagrange Reach of the Illinois River region are then simulated. Our results indicate that flood easements may provide positive net benefits. This positive result stems primarily from the decreased risk of flooding for non-inundated agricultural levee districts, rather than from reduced municipal flood damages. Our results are robust to changes in the estimated dollar damages, yet extremely sensitive to changes in hydrological estimates.Resource /Energy Economics and Policy,

    Abundance Uncertainties Obtained With the PizBuin Framework For Monte Carlo Reaction Rate Variations

    Get PDF
    Uncertainties in nucleosynthesis models originating from uncertainties in astrophysical reaction rates were estimated in a Monte Carlo variation procedure. Thousands of rates were simultaneously varied within individual, temperature-dependent errors to calculate their combined effect on final abundances. After a presentation of the method, results from application to three different nucleosynthesis processes are shown: the Îł\gamma-process and the s-process in massive stars, and the main s-process in AGB stars (preliminary results). Thermal excitation of nuclei in the stellar plasma and the combined action of several reactions increase the final uncertainties above the level of the experimental errors. The total uncertainty, on the other hand, remains within a factor of two even in processes involving a large number of unmeasured rates, with some notable exceptions for nuclides whose production is spread over several stellar layers and for s-process branchings.Comment: 8 pages, 4 figures; Proceedings of OMEG 2017, Daejeon, Korea, June 27-30, 2017; to appear in AIP Conf. Pro

    The impact of stellar rotation on the CNO abundance patterns in the Milky Way at low metallicities

    Get PDF
    We investigate the effect of new stellar models, which take rotation into account, computed for very low metallicities on the chemical evolution of the earliest phases of the Milky Way. We check the impact of these new stellar yields on a model for the halo of the Milky Way that can reproduce the observed halo metallicity distribution. In this way we try to better constrain the ISM enrichment timescale, which was not done in our previous work. The stellar models adopted in this work were computed under the assumption that the ratio of the initial rotation velocity to the critical velocity of stars is roughly constant with metallicity. This naturally leads to faster rotation at lower metallicity, as metal poor stars are more compact than metal rich ones. We find that the new Z = 10-8 stellar yields computed for large rotational velocities have a tremendous impact on the interstellar medium nitrogen enrichment for log(O/H)+12 < 7 (or [Fe/H]< -3). We show that upon the inclusion of the new stellar calculations in a chemical evolution model for the galactic halo with infall and outflow, both high N/O and C/O ratios are obtained in the very-metal poor metallicity range in agreement with observations. Our results give further support to the idea that stars at very low metallicities could have initial rotational velocities of the order of 600-800kms-1. An important contribution to N from AGB stars is still needed in order to explain the observations at intermediate metallicities. One possibility is that AGB stars at very low metallicities also rotate fast. This could be tested in the future, once stellar evolution models for fast rotating AGB stars will be available.Comment: Contribution to Nuclei in the Cosmos IX (Proceedings of Science - 9 pages, 4 figs., accepted) - Version 2: one reference added in the caption of Fig.

    SPINSTARS at low metallicities

    Full text link
    The main effect of axial rotation on the evolution of massive PopIII stars is to trigger internal mixing processes which allow stars to produce significant amounts of primary nitrogen 14 and carbon 13. Very metal poor massive stars produce much more primary nitrogen than PopIII stars for a given initial mass and rotation velocity. The very metal poor stars undergo strong mass loss induced by rotation. One can distinguish two types of rotationnaly enhanced stellar winds: 1) Rotationally mechanical winds occurs when the surface velocity reaches the critical velocity at the equator, {\it i.e.} the velocity at which the centrifugal acceleration is equal to the gravity; 2) Rotationally radiatively line driven winds are a consequence of strong internal mixing which brings large amounts of CNO elements at the surface. This enhances the opacity and may trigger strong line driven winds. These effects are important for an initial value of υ/υcrit\upsilon/\upsilon_{\rm crit} of 0.54 for a 60 M⊙_\odot at Z=10−8Z=10^{-8}, {\it i.e.} for initial values of υ/υcrit\upsilon/\upsilon_{\rm crit} higher than the one (∌\sim0.4) corresponding to observations at solar ZZ. These two effects, strong internal mixing leading to the synthesis of large amounts of primary nitrogen and important mass losses induced by rotation, occur for ZZ between about 10−8^{-8} and 0.001. For metallicities above 0.001 and for reasonable choice of the rotation velocities, internal mixing is no longer efficient enough to trigger these effects.Comment: 5 pages, 4 figures, to be published in the conference proceedings of First Stars III, Santa Fe, 200

    Possible pair-instability supernovae at solar metallicity from magnetic stellar progenitors

    Full text link
    Near-solar metallicity (and low-redshift) Pair-Instability Supernova (PISN) candidates challenge stellar evolution models. Indeed, at such a metallicity, even an initially very massive star generally loses so much mass by stellar winds that it will avoid the electron-positron pair-creation instability. We use recent results showing that a magnetic field at the surface of a massive star can significantly reduce its effective mass-loss rate to compute magnetic models of very massive stars (VMSs) at solar metallicity and explore the possibility that such stars end as PISNe. We implement the quenching of the mass loss produced by a surface dipolar magnetic field into the Geneva stellar evolution code and compute new stellar models with an initial mass of 200 M⊙200\,M_\odot at solar metallicity, with and without rotation. It considerably reduces the total amount of mass lost by the star during its life. For the non-rotating model, the total (CO-core) mass of the models is 72.8 M⊙72.8\,M_\odot (70.1 M⊙70.1\,M_\odot) at the onset of the electron-positron pair-creation instability. For the rotating model, we obtain 65.6 M⊙65.6\,M_\odot (62.4 M⊙62.4\,M\odot). In both cases, a significant fraction of the internal mass lies in the region where pair instability occurs in the log⁥(T)−log⁥(ρ)\log(T)-\log(\rho) plane. The interaction of the reduced mass loss with the magnetic field efficiently brakes the surface of the rotating model, producing a strong shear and hence a very efficient mixing that makes the star evolve nearly homogeneously. The core characteristics of our models indicate that solar metallicity models of magnetic VMSs may evolve to PISNe (and pulsation PISNe).Comment: 4 pages, accepted for publication in A&

    Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: Evolution to the end of core helium burning

    Get PDF
    Massive stars are key sources of radiative, kinetic and chemical feedback in the Universe. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inconsistent results for the same stars. We use three of these 1D codes – genec, kepler and mesa – to compute non-rotating stellar models of 15, 20 and 25 M⊙ and compare their nucleosynthesis. We follow the evolution from the main sequence until the end of core helium burning. The genec and kepler models hold physics assumptions used in large grids of published models. The mesa code was set up to use convective core overshooting such that the CO core masses are consistent with those obtained by genec. For all models, full nucleosynthesis is computed using the NuGrid post-processing tool mppnp. We find that the surface abundances predicted by the models are in reasonable agreement. In the helium core, the standard deviation of the elemental overproduction factors for Fe to Mo is less than 30 per cent – smaller than the impact of the present nuclear physics uncertainties. For our three initial masses, the three stellar evolution codes yield consistent results. Differences in key properties of the models, e.g. helium and CO core masses and the time spent as a red supergiant, are traced back to the treatment of convection and, to a lesser extent, mass loss. The mixing processes in stars remain the key uncertainty in stellar modelling. Better constrained prescriptions are thus necessary to improve the predictive power of stellar evolution models
    • 

    corecore