1,982 research outputs found

    Scattering by impurity-induced order parameter ``holes'' in d-wave superconductors

    Full text link
    Nonmagnetic impurities in d-wave superconductors cause strong local suppressions of the order parameter. We investigate the observable effects of the scatterigng off such suppressions in bulk samples by treating the order parameter "hole" as a pointlike off-diagonal scatterer treated within a self-consistent t-matrix approximation. Strong scattering potentials lead to a finite-energy spectral feature in the d-wave "impurity band", the observable effects of which include enhanced low-temperature microwave power absorption and a stronger sensitivity of the London penetration depth to disorder than found previously in simpler ``dirty'' d-wave models.Comment: 5 pp. Revtex including 4 postscript figures, submitted to Phys. Rev.

    Theory of Thermal Conductivity in YBa_2Cu_3O_{7-\delta}

    Full text link
    We calculate the electronic thermal conductivity in a d-wave superconductor, including both the effect of impurity scattering and inelastic scattering by antiferromagnetic spin fluctuations. We analyze existing experiments, particularly with regard to the question of the relative importance of electronic and phononic contributions to the heat current, and to the influence of disorder on low-temperature properties. We find that phonons dominate heat transport near T_c, but that electrons are responsible for most of the peak observed in clean samples, in agreement with a recent analysis of Krishana et al. In agreement with recent data on YBa_2(Cu_1-xZn_x)_3O_7-\delta the peak position is found to vary nonmonotonically with disorder.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let

    Cubic Curves, Finite Geometry and Cryptography

    Full text link
    Some geometry on non-singular cubic curves, mainly over finite fields, is surveyed. Such a curve has 9,3,1 or 0 points of inflexion, and cubic curves are classified accordingly. The group structure and the possible numbers of rational points are also surveyed. A possible strengthening of the security of elliptic curve cryptography is proposed using a `shared secret' related to the group law. Cubic curves are also used in a new way to construct sets of points having various combinatorial and geometric properties that are of particular interest in finite Desarguesian planes.Comment: This is a version of our article to appear in Acta Applicandae Mathematicae. In this version, we have corrected a sentence in the third paragraph. The final publication is available at springerlink.com at http://www.springerlink.com/content/xh85647871215644

    Microwave Conductivity due to Impurity Scattering in a d-wave Superconductor

    Full text link
    The self-consistent t-matrix approximation for impurity scattering in unconventional superconductors is used to interpret recent measurements of the temperature and frequency dependence of the microwave conductivity of YBCO crystals below 20K. In this theory, the conductivity is expressed in terms of a fequency dependent single particle self-energy, determined by the impurity scattering phase shift which is small for weak (Born) scattering and approaches π/2\pi / 2 for unitary scattering. Inverting this process, microwave conductivity data are used to extract an effective single-particle self-energy and obtain insight into the nature of the operative scattering processes. It is found that the effective self-energy is well approximated by a constant plus a linear term in frequency with a small positive slope for thermal quasiparticle energies below 20K. Possible physical origins of this form of self-energy are discussed.Comment: 5 pages, 4 figure

    Design patterns and pspects : modular designs with seamless run-time integration

    Get PDF
    Some solutions proposed in the original design pattern literature were shaped by techniques as well as language deficiencies from object-oriented software development. However, new modularity constructs, composition and transformation mechanisms offered by aspect-oriented programming address deficiencies of object-oriented modeling. This suggests classical design pattern solutions to be revisited. In our paper we point out that aspect-oriented programming not only allows for alternative representations of proposed solutions, but also for better solutions in the first place. We advocate a native aspect-oriented approach to design patterns that emphasizes on improving design pattern solutions both during development and at run-time. We use a simple yet effective method to analyze and describe different solutions on the basis of variation points, fixed parts, variable parts, and optional glue, employing dynamic run-time weaving

    Effect of electron irradiation on superconductivity in single crystals of Ba(Fe1x_{1-x}Rux_{x})2_2As2_2 (x=x=0.24)

    Full text link
    A single crystal of isovalently substituted Ba(Fe1x_{1-x}Rux_{x})2_2As2_2 (x=0.24x=0.24) was sequentially irradiated with 2.5 MeV electrons up to a maximum dose of 2.1×10192.1 \times 10^{19} electrons/cm^2. The electrical resistivity was measured \textit{in - situ} at T=T=22 K during the irradiation and \textit{ex - situ} as a function of temperature between subsequent irradiation runs. Upon irradiation, the superconducting transition temperature, TcT_c, decreases and the residual resistivity, ρ0\rho_0, increases. We find that electron irradiation leads to the fastest suppression of TcT_c compared to other types of artificially introduced disorder, probably due to the strong short-range potential of the point-like irradiation defects. A more detailed analysis within a multiband scenario with variable scattering potential strength shows that the observed TcT_c vs. ρ0\rho_0 is fully compatible with s±s_\pm pairing, in contrast to earlier claims that this model leads to a too rapid a suppression of TcT_c with scattering

    Field-induced local moments around nonmagnetic impurities in metallic cuprates

    Full text link
    We consider a defect in a strongly correlated host metal and discuss, within a slave boson mean field formalism for the ttJt-t'-J model, the formation of an induced paramagnetic moment which is extended over nearby sites. We study in particular an impurity in a metallic band, suitable for modelling the optimally doped cuprates, in a regime where the impurity moment is paramagnetic. The form of the local susceptibility as a function of temperature and doping is found to agree well with recent NMR experiments, without including screening processes leading to the Kondo effect.Comment: 7 pages, submitted to Phys Rev

    Finite Projective Spaces, Geometric Spreads of Lines and Multi-Qubits

    Full text link
    Given a (2N - 1)-dimensional projective space over GF(2), PG(2N - 1, 2), and its geometric spread of lines, there exists a remarkable mapping of this space onto PG(N - 1, 4) where the lines of the spread correspond to the points and subspaces spanned by pairs of lines to the lines of PG(N - 1, 4). Under such mapping, a non-degenerate quadric surface of the former space has for its image a non-singular Hermitian variety in the latter space, this quadric being {\it hyperbolic} or {\it elliptic} in dependence on N being {\it even} or {\it odd}, respectively. We employ this property to show that generalized Pauli groups of N-qubits also form two distinct families according to the parity of N and to put the role of symmetric operators into a new perspective. The N=4 case is taken to illustrate the issue.Comment: 3 pages, no figures/tables; V2 - short introductory paragraph added; V3 - to appear in Int. J. Mod. Phys.

    Two routes to magnetic order by disorder in underdoped cuprates

    Full text link
    We study disorder-induced magnetism within the Gutzwiller approximation applied to the t-J model relevant for cuprate superconductors. In particular, we show how disorder generates magnetic phases by inducing local droplets of antiferromagnetic order which eventually merge, and form a quasi-long range ordered state in the underdoped regime. We identify two distinct disorder-induced magnetic phases of this type depending on the strength of the scatterers. For weak potential scatterers used to model dopant disorder, charge reorganization may push local regions in-between the impurities across the magnetic phase boundary, whereas for strong scatterers used to model substitutional ions, a local static magnetic moment is formed around each impurity. We calculate the density of states and find a remarkably universal low-energy behavior largely independent of both disorder and magnetization. However, the magnetic regions are characterized by larger (reduced) superconducting gap (coherence peaks) and a sub-gap kink in the density of states.Comment: 9 pages, 7 figure
    corecore